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FOREWORD

This is Part V of a series of reports on rationales and
techniques of matrix factoring which play an important role
in multivariate analysis techniques. Indeed, it may well be
said that all adequate models and methods of multivariate
analysis are special cases of matrix factoring techniques.
The more traditional methods of factor analysis, in particular,
are speclal cases of more general matrix factoring technigques,

as are also all multiple regression models,
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We have seen in the previous chapters that we may calculate, in a wide
variety of ways, a factor loading matrix whose major product mement gives a
lower rank approximetion to the correlation or covariance matrix obtained
from data matrices. We also know from Chapter 4 that, if any of these matri-
ces obtained by a particular computational method were postmultiplied by a
square orthonormal metrix, the major product moment of the resulting matrix
would be the same as the major product moment of the matrix prior to multi-
plication by the orthonormal metrix. This, of course, is because in the
mejor product mament the square orthonormal matrix is multiplied by its
transpose to yield the identity matrix.

We also saw in Chapter 4 that, if we regard the factor loading matrix
as one of the factors in the product of the two matrices which purports to
approximate the data matrix, the same situation prevails. Suppose we have
some approximation to & factor score matrix, postmultiplied by the trans-
pose of a factor leading matrix, as a lower rank approximation to the data
matrix. We may then also have the factor score matrix postmultiplied by an
orthonormal matrix to yield another factor score matrix, and the transpose
of the factor loading matrix premultipligd by the transpose of the same ortho-
normal matrix. Then the product of these two transformed matrices would be
exactly the same as that of the original matrices. |

Furthermore, we learned that these transformation matrices need not be
square orthonormal, but that we may have a more general simt“ion. We may

have the factor score matrix postmultiplied by scme square basic matrix, and
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. the transpose of the factor loading matrix premultiplied by the inverse of

this same matpix. Then the major product of the two transformed matrices
would be thie same as the major product of the two original matrices, This

is because the square basic matrix multiplied by its inverse yields the

identity matrix.

It is clear then, that we may have a multiply infinite number of factor
loading matrices whose major product moments give identical results. Simi-
larly, we may have an infinite number of pairs of factor score and factor
loading matrices, whose major products give identical results. The question
then arises as to which of these pairs of factor loading and factor score
matrices is best, in some defined sense.

. In this chapter we shall consider only factor loading matrices. We

shall attempt to achieve scme transformation of the arbitrary matrix so that

the new factor loading matrix will have the following characteristies. First,
for each factor loading vector, only a relatively small number of the vari-

11 load-

ables shall have high loadings, and the remainder should have sm
ings. Second, each variable shall have loadings in only a few of the factors,
Third, for any given pair of factors, a number of the variables shall have
small loadings in both factors. Fourth, for any given pair of factors, some
of the variables shall have high loadings in one factor and low in the other,
vhile other variables shall have high loadings in the second factor but not
in the first. Fifth, for any given pair of factors, very few of the vari-
ables shall have high loadings in both,

& These are the conditions which Thurstone (1947) has formulated as the

"simple structure" criteria. We shall therefore refer to transformations
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vhich attempt to achieve these objectives as simple structure transforme-
tions, and we shall refer to the transformed factor loading matrix as a
simple structure fictor loadimg metricx.

There are; in-general; three kinds of methods which have been used for
transforming erbitrary factor matrices to simple structure matrices, The
first of these is by means of graphical methods of rotation. In this method,
every vector of factor loadings is plotted against every other vector, and
by inspection of the plots, rotations or transformations are made two at &
time, This is the oldest of the methods. It was developed by Thurstone
(19k47) and has been used extensively. The chief disadvantages of the method
are that it is extremely time-consuming; it is not adapted to objective com-
putational routines; and a great deal of personal judgment is left to the in-
dividual who does the plotting and the transformations.

The second procedure is based on g priori hypotheses, Here the investis
gator has some @ priori hypothesis as to which varisbles should have high
loadings in which factors, and which should not. This we may call the hypo=
thesis method of transformation.

The third type of method involves analytical or mathematical criteria

for transformation. These methods adopt certain msthematical functions of

the transformed factor loadings which are to be optimized. They are call

the ansdytical methods of transformation.

While the graphical methods have been extensively used im the past,
they have been falling more and more into disuseé as more cbjective methods
have been developed. Therefore, these methods will be discussed in this

book. In this chapter, we shall give consideration to those methods which
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start with same hypothesis as to which factor loading should be sizable in
which variables. In the next chapter, we shall consider scme analytical
methods which do not depend on g priori hypotheses.

In any cage, it must be emphasized, as Thurstone (1947) has done so

frequently, that the extent to which simple structure can be achieved by any
of the methods is definitely limited by the nature of the data to be analyzed,
and that simple structure must be inherent in the data if any of the methods
is to reveal it in the transformed factor matrices.

17.1 Characteristics of the Hypotheeis Metheds

‘
|
|
|
|
|
%

The hypothesis methods of transformation are similar in several respects.

First, they begin with some arbitrary factor loading matrix--thet is, with
scme factor loading matrix computed by one of the various methods outlined
t in the previous chapters, or by other methods. Second, they are based on
‘ : some hypothesis as to which of the tests have high loedings in which factors.
The methods differ essentially in the types o6f transformation metrices em-
ployed. -
17.1.1 The Arbitrery Factor Matrices. The methods all begin with some

arbitrary factor matrix such as the centroid, the multiple group, the group

centroid, or the principal axis solution. In the methods we have discussed,

it will be recalled that they are all special cases of the rank reduction

o —p——

| method. It is, however, not necessary that the arbitrary factor matrices
be special cases of the rank reduction method. They may be based on some
clustering or B=coefficient methods, such as described by Holzinger and

s Harman (1941).

The computational routines of the hypothesis methods differ essentially

b i it S
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according to which particular type of arbitrary matrix is used. It should
be emphasized at this point that most of the procedures we have outlined
have haed as their primary cbjective the finding of a factor loading matrix
which, with a minimum number of factors, will give the best approximation
to the correlation or covariance matrix. A major concern has been to find
the smallest number ef factors which, with a satisfactory degree of accuracy,
can reproduce the correlation or covariance matrix and, indirectly, the data
matrix., This objective recognizes the finding of a lower rank best approxi-
mation to a data matrix as fundamentel to all scientific investigations.
17.1.2 The Hypothesis Matrix. The group of methods considered in this

chapter depend on having some a priori hypotheses as to which tests should

have high loadings in vhich factors, and which tests should have low load-
ings. These methods are characterized by the spec:lf?;eatien of a binary
hypothesis matrix., This binary matrix has a 1 in the ijth position if the
ith test has a high lcading in the Jth factor. Otherwise, it has a 0 in
this position.

This binary hypothesis matrix can be made up after the variables are
assembled, However, Tnurstone (1947), Guttman (1952), and other have em-
phasized that i% is better first to make up an hypothesis matrix and then
to attempt to specify variables which will satisfy the hypothesis.

The ideal binery hypothesis matrix would be one in which there is onmly
s single 1 in each vow, and roughly an equal number of 1l's in each column.
This would be a nonoverlapping hypothesis matrix. However, there is noth-
ing to prevent one from having a more complex hypothesis so that he may

have several 1's in each rov for some of the variables, indicating that he

e R
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believes the variables have loadings on more than one of the factors.

It will be recalled that a binary matrix is also involved in the multiple
group method of Pactor analysis, and thet bivary vectors are involved in the
group centroid method. In those methods; however, it was considered desir-
able, but not mandatory, thet these binary matrices or vectors represent
plausible hypotheses as to the factor loadings to be found.

17.1.3 The Transformation Matrix, The methods described in this chapter
all require a decision as to what particular conditions are to be satisfied
by the transformation matrix. Usually it is corisidered desirable to have a
transformation matrix which is normel by columns., That is, the winor product
moment of the transformstion matrix should have unity in ‘the diagonals. This
restriction is required so that the factor vectors of the new transformed
factor matrix will be comparable to one another. More technically, such a
transformation provides the basis for finding the corvelation among the new
reference axes from which the new factor loadings are measured.

This concept, however, involves us with geometric and trigonometric
symbolic systems which we wish to avoid in this book. We have attempted to
restrict ourselves to algebraic and arithmetic concepts. This has been in
the belief that the traditionmal rendom mixture of various types of symbolic
mathematical systems does not yield a better understanding of the phencmena
under study, unless one is already thoroughly familiar with the standard
symbolic systems and the interrelationships among them. The assumption in
this book is that many readers are not thoroughly femiliar with these over-
lapping and interrelated symbolic systems.

The methods differ with respect to the type of transformation involved.
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. These may be square orthonormel transformations. If the transformations
are not orthonormal, they are called cbligue. Therefore, a choice between

orthonormal ané obldque transformat

ong s available. Although the term

"oblique” i8 not particularly appropriate; we shall continue to use it

since it is well-established in the literature.

The methods differ also in restrictions which mey be placed on the
transformed simple structure factor loading matrix. We shall describe one
method. M@re'epeeiﬁcally, one type of transformation is such that, for all
varisbles which have O's in a given column of the hypothesis binary matrix,
the sum of their loadings in the simple structure matrix for the correspond-
ing factor vector is O,

17.2 Kinds of Methods

In this chapter we shall outline three methods which differ with respect

v to the type of arbitrery matrix on which they are based. A fourth method
will yield a zero sum for assumed zero loadings in each factor. A fifth
method uses a square orthonormal transformation.

17.2.1 The Multiple Group Matrix. This method begins with an arbitrary
factor matrix obtained by the multiple group method. We shall assume that
the binary matrix used in the multiple group method was actually an hypo-
thesis matrix, and that it is the one which the transformed simple structure
matrix 18 to resemble as closely as possible, This particular type of arbi-
trary factor loading matrix is regarded as a special case because certain
computational simplifications are possible when the binary grouping matrix

: and the binary hypothesis matrix are the same.

17.2.2 The Principal Axis Avbitrary Matrix. The second method we shall

g 3 NSl S At
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outline uses the principal axis or basic structure factor loading matrix

as the arbitrary matrix. Ih many cases when high speed computers have been
used, the solution will be a principal axis or basic styucture factor matrix.
The computations for the trensformed simple structure matrix are simplified
because the principal axis solution yields an orthogonal factor matrix.

17.2.3 The Arbitrary Factor Matrix. This method may be regarded as a
generalization of other methods, of which the multiple group and the princi-
pal axis arbitrary matrices are special cases. However, the solution does
not depend on any peculiar properties of the factor loading matrix, such as
orthogonality, or on the identity of the hypothesis and the grouping binary
matrix, as in the multiple group method. The method does not depend on how
the arbitrary factor matrix was determined, and requires only the construc-
tion of the binary hypothesis matrix.

17.2.4 The Zero Partial Sum Method. This method is independent of the
particular type of arbitrary matrix on which it is based. We may begin with
any of the solutions discussed in the previous chapters. In any case, the
transformation of the arbitrary matrix yields a simple structure matrix such
that those varisbles which have zeros in an hypothesis vector will yleld a
zero sum for the corresponding factor loadings. This does not mean neces-
sarily that the simple structure criteria may bve well satisfied, or that the
bis

ary hypothesis matrix may be reasonably well approximated by the trans-
formed matrix. For example, it is guite possible that even though partial
sums are O, the elements going into the sum may still vary greatly. Further-

more, apprecisble or high loadings may not appear in the simple structure

matrix to correspond with 1l's in the hypothesis matrix. The results ylelded

e o B P BRI SRR TRe—



by this or any simple structure solution are as much a function of the date
themselves as of the particular method used.

17.2.5 The Orthonormal Trensformation, In the methods discussed above,
the type of transformation~-whether orthonommsl or obligue--was not mentdoned.
It will be recelled that only if the transformation of a factor loading matrix
is orthonormal will the major product moment of the original and the trans-
formed factor loading matrix be the same. There is nothing in the cemputa-
tional procedures of the methods just discussed to guarantee that the trans-
formation matrix will be orthonormal., In general, it will be obligue. It
should be emphasized here that this is not a serious objection because, as
we have indiceted in Chapter 4; the main cbjective is not to reproduce the
correlation or covariance metrix with the major product mowent of a facter
loading matrix, but rather to reproduce the original or rescaled data matrix
as closely as possible by the major product of & factor score and a factor
loading matrix. Therefore, if we get a gliven factor loading matrix and trans-
form it with some nonorthonormal or oblique matrix, we can always transform
the factor score matrix corresponding to it by the inverse of this transfor-
mation, so that the major product of the two will be the same as the major

However, there has been considerable insistence among some research
workers that trensformations be orthonormal, and it is of interest to con-
sider a method which will guarantee an orthonormal solution based on the

binary hypothesis matrix., .The chief advantage of the orthonormal transfor-

mation procedures is that in certain cases, as, for example, the principal

axis method, one can be sure that the factor scores are uncorrelated, or

e
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vhat aemounts to the same thing, thet the factor score matrix is an orthogonal
metrix, '
17.3 The Multiple Group Factor Matrix

17.3.1 Chearacteristics of the Method, This method essumes that we have
adopted the multiple group method of factoring the correlation matrix., As
will be recalled, this method begins with the multiplication of the correla-
tion covariance matrix by a grouping binary matrix. In the technigue of
this section, the grouping binary matrix is the same as the binary hypothesis
matrix.

However, the procedure is such that one does not need to carry out sll
of the computations for the multiple group factor matrix. Because the group-
ing and the hypothesis binary matrices are the same, one can omit some of the
computations for the multiple group matrix. Distinguishing characteristics
of this method are thaet one begins with only a partial solution of the multi-
ple group metrix, and that the computations are somewhat simpler than for
other hypothesis methods discussed in this chapter.

17.3.2 Computational Equations

17.3.2a Definition of Notation

R is the corveletion matrix.

£ is the binary hypothesis matrix.

B is the transformation matrix. |

¥ is the correlation of the reference axes.

b is the simple structure factor matrix.

ke b

W
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17.3.2b The Equations
F = Rf (17.3.1)
S = P £ (17.3.2)
tt = 8§ : (17.3.3)
¢ =.FF : (17.3.4)
c = G*s (17.3.5)
g = 8¢C (170306)
7?7 = gC¢C ' (17.3.7)
® .
D = D;% (17.3.8)
&~
H = ¢t CD (17'3-9)
b = P (CD) (27.3.11)
17.3.3 Computational Instructions. We begin the computations with the
correlation or covariance matriX, rather than with the multiple group factor
matrix, because we shall cmit the final steps of the multiple group solution.
We assume that the binary matrix £ has been comstructed, It has 1's for
those tests in each factor which are assumed to have high loadings, and O's
» for all of the othera.
The first step, as in the multiple group method, is indicated in Bq.
&

s ——p—
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(17.3.1). Here we postmultiply a correlation metrix by the hypothesis binary
matrix £, Obviously, this merely serves to sum those columns of the correla-
tion matrix.corresponding to. the 1's in the vectors of the f matrix on the
right of Bav (27.3:2)s

The next step, as in the multiple group method, is to premultiply the f
matrix by the trenspose of the T matrix calculated in Eg. (17.3,1). This is
indicated in Bq, (17.3.2) by the S matrix on the left of the equation, This,
in effect, adds rows of the 'g_f matrix from Bq. (17.3.1), corresponding to the
1's in the vectors of the f matrix, to give a symmetric matrix, S, in Eq.
(17.3.2).

Eqy (17.3.3) indicates a triangular factoring of the matrix S of Eq.
(17.3.2). This triengula:

factoring is not necessary unless one actually
wishes to see the traneformgtion matrix which is indicated in Ey. (17.3.9).

. For most of the parameters of interest in & factor analysis, this transfor--

trix, as such, is not required. It is only to make the analysis
complete that it might be included.
Eq. (17.3.4) is the minor product mement of the F matrix calculated in
Eqa. (17.3.1). This is indicated on the left by G.
Ba. (17.3.5) requires the calculation of the inverse of the G matrix
caleulat

ed in Ba. (17.3.4). The matrix designated as C in Eq. (17.3.5) is
the S matrix of Ba. (17.3.2) premultiplied by the inverse of the G matrix
given in Bg. (17.3.4).

Here we premultiply the C matrix of Eq. (17.3.5) by the § matvix of Eq.

(17.3.2)s This we designste as g,
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We rext require the y matrix indicated in Bq, (17,3.7). This is obtained
by premultiplying the C matrix of Ba. (17,3.5) by the g watrix of Eq. (17.3.6).

The camputation of a diagenal matrix is indicated by Bq. (17.3.8). This
is simply s metrix vwhose elements are the veciprocal square roots of the di~
agonal elements-of the y matrix given by Eg, (17.3.7).

The computation of the E matrix, which is the transformation matrix for
the multiple group factor matrix, is indicated in Bg. (17.3.9). This is the
triple product, from left to right, of the upper triangular factor of the s

matrix in BEq. (17.3.3) by the € matrix of Eq. (17.3.5) by the diagonal matrix

of Bq. (17.3.8). As indicated above, this matrix is not used in the coimputa-
tion of the simple structure factor loading matrix. It is used in Chapter 21
for the calculation of general factor parameters, but if these are not de-
sired it yeed not be calculdted. |

The calculation of a correlation matrix is indicated in Eq. (17.3.10).
This matrix is the minor product moment of the H matrix of Eg. (17.3.9). It

could be caleul

ated as such from Eq. (17.3.9), but it is simpler to calculate
it from Egs. (17.3.7) and (17.3.8). This matrix is of interest because it
shows the extent to which the reference vectors of the transformation matrix

are correlated. It is precicely a corrvelation matrix of the simple structure

veference axes., In most factor analyses, both this matrix and its normalized
inverse are calculated to indicate the extent to which the transformation de-~
parts from orthonormality. More particularly, these matrices are useful for
purposes of further analysis, as indicated in Chapter 2. The matrix is of
interest also because, while in general simple structure factor matrices on

the same variables are supposed to be relatively invariant from one type of
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sample to another, the correlation metrix of the simple structure reference
axes as given in Eq, (17.3.10) may be regarded as characterizing the parti-
cular semple op. which the analysis is based. It may vary greatly Sidm one
sample-¢o-ancthens

The calculation of the simple structure factor loading matrix is given
in Bq. (17.3.11)., As indicated on the right of this equation, we catpute
first & mateix which is the product of the C matrix of Eq. (17.3.5) post-
multiplied by the dlagomal metrix of Eq. (17.3.8). This matrix is then post-
multiplied into the F matrix of Bq. (17.3,1).

The charscteristic of this b metrix in Eq, (17.3,11) is that it should
represent as nearly as possible in the least square sense the simple struc-
ture hypothesis matrix £ which has been scaled on the left by a diagonal such
that the trensformstion metrix H in B, (17.3.9) is normal by columns.

17.3.4 Numerical Example. We begin this nmerical example with the
correlation matrix of previous chapters.

We shall solve for only three factors; therefore the binary matrix con-
sists of only three column vectors, The unit elements in these three vectors
are taken, regpectively, as the first three, the second three, and the third
three,

Table 17.3.1 gives the correlstion matrix postmultiplied by the binary
watrix £, as indicated by Eq, (17.3.1).

Table 17.3.2 gives the minor preduct § of the £ and the § matrices, as
indicated by Bg. (17.3.2).

Table 17.3.3 gives the minor product mement G of the F matrix, as in-

dicated by Bae (17:3:4).
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Toeble 17.3.4 gives the inverse of the G matrix shown in Table 17.3.3.

Table 17,3.5 gives the product of the 8 matrix of Table 17,3.2 pre-
multiplied by the gi matrix of Table 17.3.4. This product is the C matrix
of Bge (17:3.5).

In the body of Table 17.3.6 is given the product of the C matrix of
Table 17.3.5, premultiplied by the S matrix of Table 17.3.2. This product
1s the g matrix of Eq. (17.3.6). The last line of Table 17.3.6 is obtained
by calculating only the diagonal elements of the product 7 = g C given by
Eq. (17.3.7), and taking the reciprocal square roots of these elements as
indicated by Ba. (17.3.8).

Table 17.3.7 is the simple structure factor loading matrix b. This is
the triple product of the matrix F given by Table 17.3.1, the matrix ¢ given
by Table 17.3.5, and a diagonal matrix D constituted from the elements of
the last row of Table 17.3.6. This product is indicated by Eq, (17.3.11).

The computations indicated by Egs. (17.3.3), (17.3.9), and (17.3.10)

are not given ip this numerical example.
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Table 17.3.1 « Matrix Rf = F

2.59700  0.24900
2,600  9.30100
0 TL500

0:91760
0.92700  0.37700
1. 10500  0.91k00

1

1,26500 2, 91»900
5,94200  1,86800
1.86800  6.44400

Lh 75028 9 51 20

Table 17.3.4 - Matrix Ei

0.0760k
=0.03937

Table 17.3.5 - Matrix G- 8 = €
0. 46919 -0.03358
-0,03173 ‘Vi :

Table 17.3,6 - Matrix 8 € B
D1 = D

2.99

;103 =0, 0@',18

0.845 0,86k
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Table 17,3.7 - Simple Structure Factor Leading Matrix
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17,4 The Principal Axis Pactor Matrix

17.4,1 Characteristics of the Methcd; This method, like the previous
one, is a special case of an arbitrary matrix resulting in simplified compu-
tations. Here the simplificetion results because the principal axis factor
matrix is orthogonal by columns.

One of the most important characteristics of the method is that the
computations do not call for the calculation of the inverse of any matrix
except a diagonal matrix. This is far easier to calculate than the inverses
of symmetric or other square matrices. The method is of considerable practi-
cal importance because, with the increasing availability of high speed com-
putexjs, most of the arbitrary factor loading matrices calculated will be of
the principal axis or basic structure type.

17.4.,2 9The Cemputational Bquations

17.4.2a Defimition of Notation

1

is the principal axis factor matrix.

o

is that part of the basic diagonal matrix of R corresponding to a.
r is the correlation matrix of the reference axes.

s wat %

17.4.8b The Equations

b 15 the simple structure factor loading matrix.

G = a' ¢ (17.k.2)
c = 8¢ (17.4.2)
s = ¢ ¢ (17:4.3)
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D = 5%0 (17.k1)
H=20¢D (17.4.5)
r = DSD | (17.4.6)
b = aH (17.4.7)

17.4.3 Computaetional Instructions., The computations in this method
are relatively simple, |

We begin with Eq. (17.%.1). This is simply the product of the trams-
posed principal axis factor loading matrix postmultiplied by the binary hypo-
thesis matrix £.

Next we calculate the C matrix in Eq. (17.4.2), This is the G matrix
of Bq. (17.4.1) premultiplied by the reciprocal of the basic diagonal cor-
responding to the first three principal axis factors. In other words, this
basic diagonal includes only the basic diagonal elements of the correlation
matrix corresponding to the three factors which have been solved for.

Next we calculate Eq. (17.4.3). This is the minor product mement of
the C matrix caleulated in Eq. (17.4.2).

We then celculate a diagonal matrix whose elements are the reciprocal
square roots of the diagonal elements of S calculated in Bq. (17.%4.3). This
is indicated in Bg. (17.4.4).

Next we calculate the transformetion matrix H as in Eq. (17.4.5). This
is the matrix C of Eq. (17.4.2) postmultiplied by the diagonal matrix of Bq.
(17.4.4), It vill be noted that this computation was &ptional in the previous

method, Here, however, it is required for further calculations, as will be
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indicated for Ba. (17.4.7).

The next step is to calculate the correlation of the simple structure
ﬁmm&mm@mmemmm&&Hmmwmmymm
(17.4.3) is pre- and postmultiplied by the diagonsd metrim of Ba. (L7.h.4).
As seen from Bgs. (17.4.3), (17.4.4), and (17.4.5), r could also have been

calculated by taling the minor product moment of the H matrix in Eq. (17.k,5).
However, this would beve meant the multiplication of sguare matrices, whereas
the camputations in Eq. (17.4.6) require only operations on the symmetric
metrix S by diagonsl matrices.

Ba. (L7.4.7) gives, finally, the simple structure factor loading matrix.
This is the principel axis factor loading matrix postmultiplied by the trans-
formation matrix E of Eg. (17.4.5). This matrix now is the best least square
approximation to the scaled binary hypothesis matrix F, in which the scaling
is such as to make the colunn vectors of § in BEq, (17.4.5) normel,

17.4b.4 Numerical Exeample. We take as numerical data for this illustra-
tion the principal axis factor loading matrix calculated in Chapter 8, This
is repeated for convenience in Table 17.k.1, together with the first three
basic diagonals in the top row. The binary hypothesis matrix is the same as
given in the previous section. This hypothesis assumes that no variable has
Pactor londings in morve than one factor.

Table L7.4.2 gives the product of the transpose of the matrix in Table

Table 17.4.3 is the product C of the matrix of Table 17.4.2, premulti-
plied by the inverse of a diagonal metrix constituted fram the basic diagonal
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(17.4.2),

Tgble 17.4.4 is the minor product moment of the matrix € calculated in
Table 7.3,

Table 17.4.5 is the matrix obtained by postmultiplying the matrix C of
Table 17.4.3 by the inverse of a diagenal matrix whose elements are from the
diagenal of the matrix in Table 17.4.4. This gives the transformation H in-
dicated by Eq. (17.4.5).

Teble 17.k.6 is the simple structure factor loading matrix, It is the
product of the principal axis factor matrix of Table 17.4.1, postmultiplied
by the matrix H of Table 17.4.5. This product is indicated by Eq. (17.%.7).

The correlation matrix r of Eq. (17.4.6) is not calculated in this

numerical example,
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Table 17.4,1 « First Three Basic Diagenals and Principal
Azes Factor Vectors

3.T49
2.050
1.351

0.350
0.322
0,406
0,068
0.181
0.188

-0,588

«0.621

<0.369

Table 17.4.2 - Matrix ¢ = g" £
1.97000

2. 08T .2l20.
¢ 043700 -1, 57800
. Table 17.4.3 - Matrix ¢ = §°G
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Table 17.k5 - Trensformation Matrix H

0,52389 ~0.88869 0.07949
0.68655 ©0.28661 <0.91133

Table 17+4.6 - Simple Structure Matrix b = el

epim——

-0.068 0,043
0.130  =0,03k4
0.795 0,111
0.879  -0.037
«0.011 0,801
~0.105 0.828
0.180 .  o0.622

[]

]
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17.5 The Arbitrary Factor Matrix

17.5.1 Characteristics of the Method. This method is more general than
the two previous methods in that it applies to any Ffactor matrix, funcluding
the principal axis, centroid, grouping, and multiple group matrices as special
cages, However, the method includes a slight modification of the previous two
methods. This modification is desirable in most transformation solutions, al-
though frequently it makes very little difference,and it has been omitted from
the two previous methods in order to simplify computations.

In this method, the arbitrary factor loading matrix is nomalized by
rows~-that is, by variables--before transfomatién operetions begin upon it.
The reason for this is that all of the tests will then be given equal weight
in the transformation solution. In most of the arbitrary type solutions which
quately account for a correlation or date matrix, all of the variables do
not account for the same amount of variance in the factor matrix. In other
words, vhat have been called the communalities of the variables, or the sums
of squares of factor loadings for a given variable, will vary considerably
from one variable to another. Therefore it is considered desirable to norm-
alize the rows, or to make all of the test vectors of unit length. The unit
length vector will be recognized by some as a geometric concept. We shall
not, however, develop this concept further, since it would comtribute to a
confusion of symbolic systems. From the algebraic or arithmetic point of
view we can simply state that we wish each of the tests to carry unit velght
in the determination of the transformation, It may be recalled that in Chapter

15, for the communality type scaling method, the g factor londing matrices
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. satisfy this condition., Thet is, for any given number of factors, the
sums of squares of rows of the @ matrix are all equal to 1.
17.5.2 The Céiiputatdonal Bquations
17.5.28 Definition of Notation
a is an arbitrary factor matrix.
f is the binary hypothesis matrix,
r is the correlation of the simple structure reference axes.
H is the simple structure transformation matrix.
b is the simple structure factor matrix.
[ [
“ 17.5.2b The Bguations
<3 1 B
= e Lfe ol
| D = D%, (17.5.1)
A = Da (17.5.2)
G = Al f (17.5.3)
C = A'A (17.5.4)
M= ¢ (17.5.5)
g = MM (17.5.6)
: I (37.5.7)
®
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H = MD (17.5.8)
r = BH ' (17.5.9)
b = AH (17.5.10)

17.5.,5 Computational Instructions. In this method we assume that all
of the computations for an arbitrary factor matrix have been completed and
_that we start with th;is arbitrary matrix, however arrived at.

The first step in the calculations is indicated in Eq. (17.5.1). Here
we calculate a diagonal matrix whose elements are the reciprocal square root
of the diagonal elements of the major product moment of the arbitrary matrix
a. This means, of course, that we must calculate the sums of squares of row
elements for the arbitrary factor matﬁx a. These are what are called the
communalities of the variables based on the particular factoring solution.

The second step i8 to calculate the normalized factor loading matrix A,
as indicated in BEq. (17.5.2). This is given by premultiplying the arbitrary
factor matrix by the diagonal matrix in Eq. (17.5.1).

Bq. (17.5.3) is the minor product of the matrix in Bq. (17.5.2) and the
bypothesis matrix f,

We then calculate, as shown in Eq. (17.5.4), the minor product mement
of the matrix A given by BEq. (17.5.2). This we call C.

Next we calculate a matrix M which is the @ matrix of Eq. (17.5.3) pre-
nultiplied by the inverse of the matrix € in Eq. (17.5.4).

We then calculate Eq, (17.5.6), which is the minor product moment of the

matrix celculated in Bq, (17.5.5). This we call g.
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Next we calculate the diagonal matrix of Bq, (17.5.7). This is simply
a matrix whose diggonsl elements are the reciprocal square roots of the di-
agonal elefients: :ofﬁzhe mefrix 5@ calculated in Bg. (17.5.6).

We now calculate the transformation matrix H indicated in Eq, (17.5.8).
This 1s the matrix M of Eq. (17.5.5) posmumpliéa by the diagonal matrix of
Ege (17.5.7). The method of computation indicates that the column vectors
of the H metrix are normsl.

Bg. (17.5.9) gives the correlation of the primary reference axes as the
minor product mement of the trensformation metrix H given in Eq. (17.5.8).

Finally, Eq. (17.5.10) gives the simple structure factor loading matrix.
This is obtained by postmultiplying the matrix of Eq. (17.5.2) by the trans-
fornation matrix H given in Bq. (17.5.9).

17.5.4 Numerical Example

Table 17.5.1 gives the centroid factor loading matrix calculated in
Chapter 6, Section 3. The same binary hypothesis matrix is used as in the
previous two methods.

Table 17.5.2 gives the group centroid factor matrix normalized by rows,
as computed by Egs. (17.5.1) and (17.5.2).

Table 17.5.3 is the minor product G of the normalized factor matrix and
the binary data matrix, as computed by Eq. (17.5.3).

Table 17.5.4 18 the minor product moment C of the normalized factor
matrix, as indicated by Bg. (17.5.4).

Table 17.5.5 i8 the inverse _c_i of the matrix of Table 17.5.k.

Table 17.5.6 18 the matrix M calculsted from the matrices of Tables

17.5.3 and 17.5.5, a6 shown in Eq. (17.5.5).

B P
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Table 17.5.7 is the transformation metrix H obtained by normalizing
the columns of M in Table 17.5.6 by means of Bgs. (17.5.7) and (17.5.8).
Table 17.5.8 is the simple structure factor matrix b obtained from the
matrices of Tables 17.5.2 and 17,5.7, indicated by Bq. (17.5.10), It is to
be noted that the matrix b may be premultiplied by the inverse of the diagon-
al matrix of Eq. (17.5.1). This procedure is preferred by some factor
anslysts.,

The correlation matrix r of Eq. (17.5.9) has not been calculated.



Table 17.5.1 - Group Centroid Factor Matrix a

0.933
0,936
0.91k4
0.178
0.107
0.169
0.530
0.333
0.397

Table 17.5.2

0.115
OMO

87
0.283

- Normalized Factor Matrix A

-0.07269
5118

poo0000d
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0,002
~0.055
0.073
!" . 0&6‘
-0,027
77
0.800
0.667

Table 17.5.3 - Matrix ¢ = A’ £

2.98688
0.00087
«0.,00064

0.51703
2.9h741

1.24654
0.63426
2.62925

Table 17.5.4 = Matrix G = A’ A

8
1:0963’7

0.78369
3.08345
0453650

1.09087
0.53650
2.32504

Teble 17.5,5 - Matrix ¢

033
“. & g;ég
=0.14333
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Pable 17,5.6 - Matrix ¥ = C° G

1.00098 -0.004
-0.17957 ©
~0.428U8  -0%22

66 0.00268
b9  0.00883
658 1.12755

1
Teble 17.5.7 - Gransformetion Matrix § = M DlZ?

~0,00456  0.00237
- O‘ . 7 5
«0.22171  0.99997

Table 17.5.8 - Simple Structure Factor Matrix b

0.916
0,900

0.00k
0.037
0.093
-0.0k3

-0 -‘022
. 0.906
0.920
0,811
o

>
ga=

\
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17.6 The Zero Partial Sum Trensformation

17.6.1 Characteristics of the Method. As indicated earlier in this
chapter, the rationale of this procedure is to find a transformation such
that, for any given factor vector, the factor loadings in the simple struc-
ture matrix corresponding to the zero elements in the corresponding vector
of the binary hypothesis matrix shall add up to O. This restriction can be
imposed on any oblique solution for any arbitrary factor matrix. It aspplies
equally well to the multiple group, principal axis, and the other methods.

In general, this additional restriction tends to give smaller values
for the near-zero elements. However, there might still be considerable dis-
persion about the mean of O for these hypothesized zero elements. In any
case, the computations, as will be seen, are somewhat more involved than
they are in the methods previously considered.

17.6,2 The Computational Equations

17.6.2a Definition of Notation
g is an arbitrary factor matrix.
f is the binary hypothesis matrix.

r is the matrix of correlations of the simple structure reference
axes,

H is the simple structure transformation matrix.
b is the simple structure factor matrix.
17.6.2b The Bquations

al a (l?o\’:ul)
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17.6.3 Computational Instructions.

a

(17.6.2)
(17.6.3)
(17.6.4)
(17.6.5)
(17.6.6)
(17.6.7)
(17.6.8)
(17.6.9)
(17.6.10)
(17.6.11)
(17.6.12)
(17.6.13)
(17.6.14)
(17.6.15)

In this method we may begin with

any arbitrary factor loading matrix and operate directly upon it, or we may

first normalize the rows of the factor loading matrix as we did in the method

of Section 17.5.

In either case, we have a binary hypothesis matrix f, as in
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the previous three methods.

Bq. (17.6,1) gives the initial computations, which consist of the minor
product moment of the factor loading matrix., If this happens to be a princi-
pal axis matrix, then, of course, the matrix S on the left will be a diagonal
matrix,

We then indicate the triangular factoring of the S matrix of Bq. (17.6.1)
by Eq. (17.6.2).

The next step is to postmultiply the factor loading matrix a by the in-
verse of the upper triangular factor of the $ matrix in Eq. (17.6.2). This
is indicated in Eq. (17.6.3).

Next we calculate a vector as indicated in Eq. (17.6.4). This is simply
a vector whose elements are the sums of column elements of the @ matrix in
Eq. (17.6.3). It is, of course, the transpose of the g matrix of BEq. (17.6.3)
postoultiplied by a unit vector.

Next we calculate the minor product of the g matrix of Eq (17.6.3) vy
the hypothesis binary matrix £, as indicated in Eq. (17.6.5). This is the
matrix W on the left of Bg. (17.6.5). _

We then calculate the matrix U as indicated in Eq. (17.6.6). Bach
colunn of the U matrix in Bq. (17.6.6) is obtained by subtracting from the
Y vector caleulated in Bg. (17.6.4), the corresponding W vector from the
matrix caleulated in Ba. (17.6.5). This is given in matrix notation on the
right of Eq. (17.6.6) as the major product of the ¥ vector of Bq. (17.6.4)
by & unit row vector less the matrix W of Bq. (17.6.5).

We now nomalize the column vectors of U caleulsted in Bq. (17.6.6), as
indicated in Eq. (17.6.7). We call this the V matrix. The right side of Eq.
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(17.6.7) shows the U matrix of Bq. (17.6.6) postmultiplied by the reciprocel
square root of the dlagonal of the minor produet mement of U, It is, of
course, not necessary to caloulate the entire product mement of U, but only
the sums of squares of column elements, in order to get the D matrix used
in Bq. (17.6.7).

In Eq. (17.6.8) we caleulate the matrix 2, which is the V matrix of Eq.
(17.6.7) postmultiplied by a diagonal matrix, Now the diagonal matrix is
made up of the elements of the diagonal of the minor product moment of the
V matrix of Eq. (17.6.7) and the W matrix of Eq. (17.6.5). Here again, it
is not necessary to calculate the minor product moment but only the diagonal
elements consisting of the minor products of corresponding columns of the
V and the W matrices.

The next step is indicated by Eq. (17.6.9). This is the matrix W of
Bg. (17.6.5) minus the g matrix of Eq. (17.6.8). This we indicate as the
C matrix.

Next we calculate the matrix M indicated in Eq. (17.6.10). This is
obtained by premultiplying the C matrix of Bq. (17.6.9) by the inverse of
the upper triangular factor of the matrix § in Ba. (17.6.2).

We then calculate the minor product mement y of the matrix M calculated
in Bq. (17.6.10), as indicated in Bq. (17.6.11).

The next step is to calculate a diagonal matrix D, whose elements are
the reciprocal square roots of the diagonal elements ot 7 calculated in Eq.
(17.6.11),

We calculate the transformation matrix H as indicated in Eg. (17.6.13).

This consists in normalizing the elements of the Y matrix of Eq. (17.6.10)
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es shown on the right hand side of Bq, (17.6,13). The M matrix is post-
multiplied by the reciprocal squere root of the diagonal elements of its
niner prodiuct-wenents

The caliculations for the correlations among the primary reference axes

are indiceted in Eq. (17.6.14). Here we pre~- and postmultiply the y matrix
of Eq. (17.6.11) by the D matrix of Eq. (17.6.12).
Finally, we calculate the simple structure factor loading matrix as in
Eq. (17.6.15). As in previous methods, we postmultiply the arbitrary factor
loading matrix by the transformation matrix H calculated in Eq, (17.6.13).
17.6.4 Numerical Example
We use the same group centroid factor matrix as in the preceding section,
The tables for this example will not be discussed in detail. We merely
give below the table number and the corresponding equation number where such

an equation is given.

Pable No. Equation No.,
17.6.1 (17.6.1)
17.6.2 (17.6.2)
17.6.3 cm—smm—s
17.6.4 (17.6.5)
17.6.5 (17.6.6)
17.6.6 (17.6.7)
17.6.7 ' (17.6.8)
17.6.8 (17.6.9)
17.6.9 (17.6,10)
17.6.10 (17.6.11)
17.6.11 - (176.13)-

C17.6.12 (17.6.15)
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- It is of interest to note thet the elements for each vector of Table
17.6,12 corresponding to the zero element in the corresponding binary hypo-
thesis vector; actually do sum to O,
i
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3.03107  0.58375 0,79188
0,58375 2.38076  0.5779h
0.79188 @ 37794 169911

Teble 17.6.1 - Matrix § = al a

Table 17,6,2 ~ Matrix t

1,74100
0433530  1.50610
0.4548L  0,14968 1.21236

Table 17.6.3 ~ Matrix ¢

0.57438
-0.12787  0.,66397
«0,19970 -0,08197 0.82484

Table 17.6.4 - Matrix W = o f

0.26077T 0.60885

), 21966
1.59539

<0,30339

1.85928
1,30840
«0.85909

Teble 17.6.6 - Matrix V

i
o
-

0.90325 0.76501
<0.05600 0.53835
0.4255L  <0.35347
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Table 17.6.7 - Matrix & =

0.00003
0.00006

0.0000k .

1.59848
=0,35660
0,555k

Table 17.6.9
1.07472

-0.19121
~0.45839

Table 17.6,10 - Matrix 7 = M

1.40172
~0,10847

).
Table 17.6.11 - Matrix H =M D2

0.90775
-0.16151
-0.38718

0,01195
=0, 00074
0,00563

37

ML

0.01538
0.01.082
=0:00711

-Matrix ¢ = W -2

0.24882
1.66568

059346
1,60250

- Matrix M = ¢

900@@&56
1.13129
-0,25489

1.3U485
~0.32859

0.97552
-0,21979

-0.00586
0.00731
1.32180

‘M
~0.61359
1.74723

A

é@;OO&hB
0.00553
0.99997

Table 17.6,12 - Matrix b = a &

0.857
0.845
0.825

0,002

0,028

io;@a@

0.113
0.802
0,873
0.853

=0.003
0.029
0.077
iOCOug
iO O 023
0.776
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17.7 The Orthogonal Transformation Matrix

17.7.1 Characteristics of the Method. As indicated earlier in this
chapter, it is sometimes desirable to impose the condition of orthonormality -
on the simple structure transformation matrix. This restriction can be used
on any type of arbitfary factor loading matrix which is to be transformed to
a simple structure hypothesis matrix., The orthonormal restriction has not
been generally used, however, Nevertheless, it has 2 ciear advantage over
oblique metho&s when applied to the principal axis factor loading matrix for
which a simple structure binary hypothesis wmatrix is available. Then the
simple structure factor score matrix whose solution we shall consider in a
later chapter is an orthonormal matrix. This means that the factor scores
are uncorrelated in both the unrotated and the rotated solutions,

One characteristic of this method is that it is much more lasborious
computationally,and therefore not recommended for desk computers. The method
requires successive solutions of the basic structure of certain matrices
which are required in the repeated approximations to the final orthonormal
transformation metrix,

17.7.2 Computational Equations

17.7T+2a Definition of Notation

a is an arbitrary factor matrix.

s

is the binary hypothesis matrix.

r is the correlations of the simple structure reference axes.
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H is the simple structure transformation matrix,
b is the simple structure factor matrix,

17.7.2b The Eguations

7 = al f (17.7.1)
¢ = 7D, : ‘(1;7.7,.2)
c, = &'b, T-G Dbé.elf : (17.7.3)
cic, = qatel (17.7.5)
H o= ¢ Q& 9 (27.7.5)
b, = al (17.7.6)
r = HH =1I - Q1.7.7)

17.7.3 Computational Instructions., The computational instructions
for this method are brief, but the actual computations can be lengthy even
on high speed computers if the number of variables and the number of factors
are moderately large, such as those encountered in experimental investiga~
tions.

The method consists in a set of successive approximation cyeles begin-
ning with any arbitrary factor loading matrix which may or may not be normal-
ized by rows. We have given a binary hypothesis matrix, as in the other

methods,
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We begin with Bg. (17.7.1), vhich gives the matrix 7 as the product
of the binary matrix premultiplied by the transpose of the factor loading
natriKe.

We then define a scaling of the 7 matrix as in Eq. (17.7.2)., The scal-
ing diagonal is simply the diagonal matrix of the minor product moment of the
hypothesis matrix. If this happens to be one in which there is only a single
1 in each row, then each diagonal element is the reciprocal of the number of
1's in the corresponding column of the binary matrix,

We next indicate an iteration cycle by Eq. (17.7.3), Here we have on
the right two terms., The first of these includes the preceding approxima-
tion to the simple structure factor loading matrix. This first term is an
approximation to the simple structure factor matrix premultiplied by the
transpose of the arbitrary metrix. When i = 1 the approximetion to the
simple structure matrix, b,, may be taken as the simple structure matrix
arrived at by any one of ;r:e four preceding methods. The second term on the
right is the G matrix calculated in Eq. (17.7.2), postmultiplied by a diagon-
al matrix whose elememts are the disgonal elements of the minor product of
the previous approximation to the simple structure factor matrix and the hy~
pothesis matrix.

We indicate the minor product moment of the rhatrix calculated in Eq.
(17.7.3) by Ba. (17.7.4). Ba. (17.7.4) also indicates the basic structure
solution for this minor product moment, For each approximation i, we calcu-
late all the vectors of the basic structure factors é and Q.

Eqs (17.7.5) indicates the ith approximation to the orthonoymal trans-

formation matrix. This is obtained, as indicated on the right, by multiplying
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from left to right as follows: the C matrix by the Q matrix by the inverse
of the 4 matrix by the transpose of the § matrix,

Finally, we indicate the ith approximation to the simple structure
factor losding metrix by Ba: (17.7.6). This is the arbitrary factor matrix
postmultiplied by the ith epproximation to the trensformetion metrix solved
£or in Bq, (17:7.5).

This iteration procedure continues until, according to seme criterion,
the approximations are close enough. Presumably, the trace of the matrix
given in Eqs (17.7.4) would provide a satisfactory criterieﬁ. When this
trace does not change by more than a specified amount from one approximation
to another, we mey discontinue the computations.

Ege (17.7.7) assumes that the computations have stabilized, and there-
fore we have the minor product moment of the current H or transformation

matrix, This will be a check on the computations and by definition this

should be an identity matrix.

17.7+4 Numerical Example, We begin with the same group centroid matrix
and binary hypothesis matrix as in the previous section.

Tables 17.7.1 and 17.7.2 show the computations indicated by Egs. (17.7.1)
and (17.7.2), respectively.

The remaining tables are for the 10th approximation, as follows:

Tables 17.7.3 and 17.7.4 give the computation indicated by Eq. (37.7.3)s

Table 17.7.5 gives the minor product moment of the matrix C in Table
17. 7.4 |

oA
Table 17.7.6 gives the matrix (C/ €)™

1

Q &° Q' which is required

e e ———_
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.
-E - Table 17.7.7 gives the approximation to the orthogonal transformation
matrix ¥ as indicated by Ba. (17.7.5).
Table 17.7.8 is the approximation to the simple structure factor -matrix,
as indicated by Bg, (17.7.6).
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Table 17,7.1 - Mebrix 7

2.78300 0.45400
-0.00100  2.59500
0,00000 0,00000
Table 17.7.2 - Matrix
0.92767 0.15133
0.,00000 0,00000

Table 17.7.3 = Matrix a' v

0.62649  2,0318k4
2.39956  0.37041
0.56197 1.82739

Table 17.7.4t - Vector D

= a' f
————

1.,06000
0.53500
2.24400

Y Df’f
0.35333

0.17833
0.74800

i?;rfor i=10

2.37365

0.04159

fl and Matrix

E; = 1 -GD 'b’ for is=

-0.043  ~0.0kk4 0.0L0

0.66639 2.0%846 -2.38776
2.39955 0.40826 =0.51379
0.56197 1.82739 0.01172

Table 17.7+5 « Matrix Ci Ci for i = 10

6.51772  3.36497 -2.81748
3.36497  7.66132. -5,05569
=2,8L748 =5,05569 5.96551

Table 17.7.6 =« Matrix Qi A Qi for i = 10

0.4406% -0,07679
=0,076T9  0.50770
0.06205 0,22263

@;06205
0.22263
0.58089

10
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okle 17.7.7 « Makpie B = O 2 for 1 =
;, - Table 17.,7.7 = Matrix E_%- = C%?iféi Qi for 1 = 10
0.99410 <0.09137 ~0,05867
0,10803 ©,88725 0,4LB5L
Table 17,7.8 ~ Simple Structure Approximetion
b, = aH, fori=1l0
e S
=0.078 0,430  -0.827
0,100 0,372 -0.838
0.841 0,069 -0.175%
0,860  «0,027  -0.21k
0.2h4 0.82h 0.0kl
0.169 0.852 0.057
0,349 0,745 -0.072
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17.8 Mathematical Proofs

17,8.1 The Multiple Group Matrix

Given the correlation matrix R and the binary simple structure hypo-

thesis matwrix £, let

F = RT
and

S = P f

tt = 8

Then the multiple group factor metrix is well known to be

a = Fg?

(17.8.1)

(17.8.2)

(17.8.3)

(17.8.4)

Assume now we wish to find the simple structure matrix b of best fit to £,

We consider
al = Db
and
P-£fD = €
where D is diagonal and where for § in Bg. (17.8.5) we have

Dyg = 1

We wish to minimize

(17.8,5)

(17.8:6)
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The sélution is well known to be
H = (a a)*a! £
From Egs. (17.8.2), (17.8.3), (17.8.4), and (17.8,9)

E = t' (F F)* 8D

Let

FF

From Egs. (17.8.3), (17.8,10), and (17.8.11)

B! H

let

and

g

"

H H

= psadtsatso

-1

8

=

=¥

G

c

DgcC?D

From Bg, (17.8.15)

D

=

D

e

g¢C

L6

(17.8,8)

(17.8,9)

(17.8.10)

(17.8.11)

(17.8.12)

(17.8.13)

(17.8.14)

(17.8.15)

(17.8,16)
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From Egqs, (17.8.4), (17.8.5),.(17.8.11), and (17.8.16)
) ,
b = FPC Dy'c v (17.8,17)

17.8.2 The Prineipal Awds Matrix
Given the prineipal axis factor matrix
a = Q 82 (17.8.18)
. and the binary hypothesis matrix f, consider the least square transformation
al = b : ' (17.8.19)
such that in

bP-fD = € (17.8.20)

The trace of €€ is minimized with a diagonal D such that for H in Eq.

(17.8.19) we have

Dy g = I (17.8.21)
From Eq,s.‘ (17.8.19) and (17.8.20)

alHl<fD = € (17.8,22)
The solution for H is obviously

H o= (af a)a 2D | ' (17.8.23)

Prom Ba. (17.8.18) in Ea. (17.8.23).

B o= 8 a £D (17.8.24)
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From Bg. (17.8.24)
W E = D(£ a) 8 (a! £) D (17.8.25)
Let
al £ = G (17.8.26)
86 = ¢ (17.8.27)

From Egs..(17.8.25), (17.8.26), and.(17.8,27)

H H = pc’co (17.8.28)
From Eqs. (17.8.21) and (17.8.28)

D = Dgfq (17.8.29)
From Bgs. (17.8.24), (17.8,26), (17.8.27), and (17.8.29)

H = CD (17.8.30)

17.8.3 The Arbitrary Matrix
let a be any factor loading matrix, f£: the binary hypothesis matrix, and

congider

)

N

A = D&-a] a (176031)

so that the rows of é are normalized.

Consider

AE = b (17.8432)
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and

b-fD = € (17.8.33)

with B determined so that tx §/€ is minimized and D is a diagonal such that
Dy = I (17.8,34)
Thenh the solution for H is well known to be

H

(a' a)*a’ £ (17.8.35)
Let

M (A’ Ay at ¢ (17.8.36)

i

From Bqs. (17.8.34) and (17.8.36)
1
D = Dy, - (17.8.37)
and from Bgs. (17.8.35),(17.8.36), and (17.8.37)
H = MD (17.8.38)

17.8.4 The Zero Partial Sum Simple Structure Matrix
Given the arbitrary factor matrix a and the binary hypothesis matrix f,

let
L = 11 ¢ (1758.39)

be called the supplementary matrix to £. Consider
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and
b-f = € (17.8.41)
with the restriction that
Dyry, = O (17.8.42)

That is, the hypothesized O's in f sum to O in b for corresponding columns,

From Egs. (17.8.40), (17.8.41), and (17.8.42) we write
tr (6/ €~2D,, D) = ¥ (17.8.43)

vwhere D}\ is a diasgonal matrix of lagrangien multipliers,

It will be simpler now to consider Eq. (17.8.43) with respect to each

M ; vector separately. IFrom Bgs, (17.8.40), (17.8,41), and (17.8.43)

4 -
1@ Ly N =Y

(17.8.44)

’ ¢ Y !
M, a a.Mi 2M‘ia kil

' oM
i . g FE Ey - 2N

Differentiating Bq. (17.8.45) symbolically with respect to M: 4 and equating
to O gives
3V,

ST;-; = 2(aMu, -a' g, -8/ L, N) =0 (17.8.145)

From Bq. (17.8.45)

Moi E. (al a,)il &' f.i &+ (al a)él aI I‘.i }‘i (17‘8.’."6)

Premultiplying Eq. (17.8.46) vy 1/ 4 & end using Bgs. (17.8.40) and (17.8.42)

B
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. 1 roaYE o
L', a(a a)"al T
Mo oU . alala)a L, (17.8.47)
i i
Let
tt = a'a (17.8.48)
a = at'™ (17.8.19)

Using Eqs. (17.8.48) and (17.8.49) in Egs. (17.8.46) and (17.8.47), we get,

respectively,
Y L O Y 17 8 &
M, = + (a £,-a" L, *1) (17.8.50)
L, aa £, ,
N o= o *5;”“fz"’% (17.8.51)
Loaad Ly

Using Ba. (17.8.51) in Eg. (17.8.50)

! T ! '
o L.i L.i"‘,"‘, .

M, =t (£ - ettt ) (17.8.52)
. o4 Lli o a[ L .
or
, ol L, L «a 7
My = (1 ——tiedoy ol g (17.8.53)
bl LI a al L ? ol
ol o1
let
o Ly = U, (17.8,54)
Vi (17.8.55)
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al £, = v, (17.8,56)

ol

From Bgs. (17.8.5k), (17.8.55), and (17.8.56) in BEq. (17.8.53)

M, = (- Vv Wy (17.8.57)

ol

Going now to the complete matrix notation, we have from Egs. (17.8.54),

(17.8.55), and (17.8.56), respectively,

oL = U . (17.8.58)
Vo= U DGy (17.8.59)
£ = W (17.8.60)

From Egs. (17.8.39) end (17.8.58)

U = o (11 -£) (17.8.61)
Fron Egs. (17.8.60) and (17.8.61)

U = o111 -W . (17,81.62')
Or, if we let

a1 o= ¥ (17.8.63)
we have from Dge. (17.8.63) in Eg. (17.8.62)

U= Y1l W (17.8.64)
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Using Egs. (17.8.58), (17.8.59), and (17.8.60) in Bq. (17.8.57)
M o=t W-v Dyryy) (17.8.65)
If now we wish to ,‘nema,ilﬁ-»z:e M we have
ek
H = M %iM (17.8.66)

17.8.5 The Orthogonal Transformation Matrix
Buppose we have a binary hypothesis matrix f, and an arbitrary factor
matrix a which we wish to transform by a square orthonormal transformation

to the best least square approximation to £ D, where D is a diagonal to be

determined, We let

b = aH (17.8.67)
where by hypothesis

BH = I (17.8.68)
The approximation equation is

b-£D = € (17.8.69)
We write the least square fun§$i6n with the constraint in Eq, (17.8.69) as

e (€ € -8 HA) = ¥ (17.8470)
vhere ) is a metrix of Lagrangian multipliers and

A o= (17.8:71)
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From Eq@. (l798967) and (l708069) in Eq. (1708070), we have
vV = tr (B a’ aB 28 &' £D+Df £D-H HA) (17.8.72)

Differentiating Eq. (17,8,71) symbolically with respect to H' and equat-

ing to O gives

o/

¥ .- 2(a’aH-a’ £D-H)

HI

»

0 (17.8.73)
To differentiate Eq. (17.8.71) with respect to D, ve let

Vv, = D1 (17.8.74)

Using Egs. (17.8.67) and (17.8.74) in Eq. (17.8.72) gives

_ o+ ! - oyl 7! - 1! ¥ ‘
v = tr (b b 2V Dyspl+ V) Doyp Vyy = B H 2) (17.8.75)

Differentiating BEq., (17.8.75) symbolically with respect to Vé and equating

to O gives
d o e ey L . o
Si%, = w2 (Dl =DypVp) = O (17.8.76)
D
From Ed. (1708576)
D = Dpp Dy 2 (17.8.77)

Using Bas. (17.8,67) and (17.8.77) in By, (17.8.73)
o' b eal 2Dy, Dy sRA = O (17.8.78)

Let
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al €Dy, = @ (17.8.79)
From Bgs. (17.8,78) and (17.8.79)

(a' b -G D) A = & (17.8.80)
Let

al b ~g Dprp = C (17.8.81)
and

C = PoQ (17.8.82)

From Egs. (17.8.81) end (17.8.82) in Eq. (17.8.80)
PaqQ 2 = H (17.8.83)

Because of Egs, (17.8.68) and (17.8.72), the only 2\:1_ which will satisfy Eq.
(17.8.83) is

SN | (17.8.8%)
Therefore, from Bgs. (17.8.83) and (17.8.84)

H = pg (17.8.85)
Tron Ba. (17.8.82) we have

o' ¢ = qaf g (17.8.86)

From Bg. (17.8.82)
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From Eqs, (17.8.85) and (17.8.87)
H = caa @

From Eqse (17.8.67) and (17.8.88) we have
b = acqat @

We may start with the approximation

Then

2
1t

o
T

(17.8.88)

(17.8.89)

(17.8.90)

(17.8.91)
(17.8.92)

(17.8.93)

(176809’%)
(17.8.95)
(17.8.96)

(17.8.97)



. CHAPTER 18

ANALYTICAL ROTATIONS

JEPURTR

We saw in Chapter 17 that if we have some hypothesis as to which vari-

ables have high loadings and which have low loadings in each factor, we may

set up a binary hypothesis matrix and, by least square procedures with certain

constraints on the transformation, get the best approximation to the binary
matrix. We saw that the transformation matrices for these procedures are
not, in general, square orthonormal unless we impose this additional con-
straint, as in the last method of that chapter. In many cases, however, a
binary metrix may not be available, or it may be that the hypotheses are
poorly satisfied by the data.
It is therefore desirable to have analytical methods which are inde-
d pendent of the a priori hypotheses of the experimenter. These analyticel
methods presumably should approximate the criteria outlined in the introduc-
tion to Chapter 17. These are the criteria formulated by Thurstone (1947).

A great many methods have been proposed for analytical rotations to

Py S o8 o b T s s

simple structure factor loading matrices, The earlier methods were proposed

by Thurstone (1947), followed by several methods developed by Horst (1941)

e g s o o

and Tucker (1944) which were semi-analytical. ILater Wrigley and Newhouse
(1952) proposed more completely analytical procedures. Then followed the
work of Carroll (1953), Saunders (1953),and several others. Perhaps the
best known methods are based on the work of Kaiser (1958).

In any case, although the mathematical thinking and development which

have gone into many of the proposed analytical methods is ingenious, these

methods have not resulted in the success which may have been hoped for., The
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metheds in general are very lsborious computationally, even with the high
speed camputers, and often they do not give results which ceme close to sat-
isfying the criteria of simple structure.

At least two conditions should be satisfied by snalytical methods, or
by any method of rotation. First, the factor loadings should be relatively
invariant with respect to the group of entities on which the data are collected.
Second, a subset of factor loadings should be relatively invariant, irrespec-
tive of which particular battery of variables includes that subset, This
latter criterion is subject to certain further qualifications, but one cri-
terion of a geod transformation procedure is that the factor loadings of
variables be relatively invariant, both with respect to the samplihg of en-
tities and the sampling of attributes.,

One of the chief difficulties with most of the analytical methods which
have been developed is that they are greatly influenced by the particular
selection of variables which go into the correlation matrix. In this book
we shall pot attempt to give an account of all of the analytical methods
which have been proposed, We shall, however, briefly describe the methods
of Professor John Carroll, whose pioneering and ingenious work may eventual-
1y result in more adequate methods.

Carroll (1953) proposed that we have a minimum number of negative factor
loadings, and that such as were present -should be small., His criterion for
transformation was based on the squared factor leoadings of the transformed
matrix. Therefore the signs would not influence the criterion of goodness
of transformation. For this matrix he required in his early model that the

miner products of all possible pairs of vectors be a minimum. This meant,
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in effect, that for any pair there should be a number of very smell squared
factor loadings; there should be very few factor loadings which were high

for both factors; and that, for these which were high in one factor, the load-
ings should be low in the other, and vice versa. Here, then, apve included
three of the Thurstone criteria of simple structure. These conditions would,
of course, satisfy the criterion that the minor product moment of the two
vectors of squared factor loadings should be small.

Carroll (1953) worked out an ingenious computational procedure for the
high speed computer for achieving suck s minimum for all pairs of factor load-
ing vectnrs, The difficulties with the procedure were, first, it was strong-
ly influenced by the particular varisbles in the set, and second, it resulted
in too few high facto'r loadings and too many negative loadings of medium size.
The transformation matrix in general was such that the correlations of the
reference axes vere negative, and the correlation among the primary factors,
as discussed in Chapter 21, tended to be positive.

Later, Carroll (1957) changed this criterion by considering, not the
minimization of sums of minor products for all pairs of squared element factor
loading vectors, but rather the minimization of the covariance of these vec-
tors, This resulted in an overcorrection for the limitations of the previous
methods,

The earlier of these methods was called the guartimin method, and the
later one was called the covarimin method. Carroll found from empirical ine
vestigation that neither of these methods worked very well. The former pro=-
cedure vas biased in favor of reference axes, which were too low in cofrela-

tion among themselves, and the latter method resulted in reference axes which
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were too highly correlated. For the latter method, the large simple struc-
ture factor loadings tended to be too large and the small ones tended to be

considerably: gheater than 0.

Carroll then formulated a combination of the two methods so as to neutra-
lize the undesirable effects of both. This combination of the quartimin and
covarimin methods has been called the oblimin method. The procedure still
left a decisinn as to just how to combine the two procedures, and a certain
amount of arbitrariness remained.

The great advantage of Carroll's approach is that one need not hypothe-
size as to whether a transformation is orthonormal or obligue. The solution
itself purports to solve for the correlations among the simple structure ref-
erence axes and the primary factor axes. Unfortunately, even with the in-
genious rationale and the extraordinarily elaborate computational procedures
which have been worked out, the methods still have not demonstrated their use-
fulness for seme sets of experimental data.

Currently, it appears that the work of Kaiser (1958) has had more practi-
cai impact on the work of factor analysts than that of other investigators.
The procedures of Kaiser specify an orthonormal transformation. This makes
the mathematics and the computational routines considerably more straight-
forward and amenable to the application of the basic structure concepts. It
does impose limitations on the results to be expected. In particular, the
possibility of achieving relative inmvariance of transformed factor loadings
with respeet to both sample of entities and sample of attributes is mere re~
mote than if more general transformation procedures were available. However,

since in this book our emphasis is en practical application, we shall give
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. our major attention to the methods developed by Kaiser, and variations of
these.
18.1 CHatacteristdcs of the Methods
18.1.1 The Orthenormsl Trensformation Matrix. The methods we shall
‘ consider do not admit of oblique transformations. The mathematical models
% on which they are based, and the computational routines, have the restriction
i of orthonormality built into them. While even yet a number of investigators
; prefer the orthonormal type of transformation as more desirable from a philo-
? sophical and scientific point of view, the tendency seems to be gaining ground
? to prefer the earlier objectives of Thurstone in his relaxed pbliqpe trans-
?. formations, which he was able to achieve by graphical methods' and shrewd
s subjective judegment. Unfortunately, many of his followers were not able to
apply the same ingenious insights and judgments in their efforts to use the
4 non-gnalytical graphical methods,

It is probable that the quest to relax the orthonormal transformation
by satisfactory objective analytical procedures will eventually triumph. If
so, it will probably result in methods for objectively eliminating from the
variables contributing to the simple structure determination, those which
are most complex in structure and which tend to confuse the transformation
attempts.

18.1.2 The Optimizing Function. With the constraint that the trans-
formation shall be orthonormal, the class of solutions we shall discuss all
consider a transformed matrix whose elements have been raised to some even

. power. This means that the new matrix has all positive elements.

s peie T 1
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In particular, we may consider the matrix of squared elements of trans-
formed factor leadings, as did Carroll. Our attention, however, is directed
to only a single factor vector of these positive elements at a time. Speeci-
fically, the optimizing criterion which Kaiser (1958) suggested is that the
variance of each such vector of positive elements shall be a maximum.

Since the elements are all positive by hypothesis, the maximum for each
vector would be achieved if all of its elements were either large or O. There-
fore, in working toward the maximization of this variance criterion, one tends
to reduce the intermediate loadings to a minimum and to maximize the number
of large and small loadings, This again satisfies one of the criteria of
Thurstone for simple structure, i.e., that each factor should have a relative-
ly large number of near vanishing elements, a limited number of very large
elements, with very few elements of intermediate size.

18.1.5 Iterative Type Solutions. All of the models considered in this
chapter differ essentially from most of those in Chapter 17 in that the solu-
tion for the orthonormal transformation matrix is arrived at by successive ap-
proximations. It will be recalled that in the last chapter only the last
model required successive aspproximations. This is the one in which the re-
striction of orthonormality of the transformation is imposed.

The varimax solution, as it was called by‘KaiSer and as developed by
him, consists of a large number of orthonormal transformations invelvitig

only two factor vectors at a time., The procedure in general is to start with,

say, the first two factor vectors, and transform them by an orthonormal trans-

formation so that the variance of their squared elements is a maximum. One

then proceeds with the new first and the third vectors, and applies another
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orthonormal transformation which satisfies the criterion of maximum variance
of squared elements for the transformed vectors. This procedure continues
for all possible pairs until the criterion of variances of squared factor
loedings ceases to improves

It can be seen that this would be an extremely laborious procedure for
desk calculators. Even for the high speed computers it can be expensive and
time-consuming if thevmatrices to be transformed are very large--for example,
of the order of 500 attributes by 20 or 30 factors. After the varimax cri-
terion is satisfied, the method of Kaiser requires the product of all of the
orthonormal matrices involved in the computational routine. This cumulative
product gives the orthonormal transformation which, when applied directly to
the arbitrary factor loading matrix, yields a transformed matrix satisfying
the varimex criterion.

18.1.4 Accumulation of Decimal Error. The method of Kaiser, because
of the very large number of individual computations going into the procedure,
each of which involves rounding errors, is subject to the accumulation of
considerable decimal error if the number of variables is large. The methods
we shall outline use somewhat different approaches to achieve the varimax
eriterion. They do not in general accumulate as much decimal error as those
of Kaiser. As a matter of fact, they are self-correcting with r'e\tt;pect to
both decimal and eomputational error.

18.2 Kinds of Methods

We shall discuss four variations of the methods proposed by Kaiser.

These we may call the successive factor varimax, the simultaneous factor

varimax, the successive factor general varimex, and the simultaneous factor
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generval vaprimax.

18.2,1 Successive Factor Varimax. The successive factor varimex method
differs essentially from that of Kaiser in that we solve for one factor vector
at a time, rether than for all of them simultaneously. As each factor is
solved for, it satisfies the varimex criterion in that the variance of the
sums of the squared elements for a factor is & maximum. Heving found this
factor, we find another in which the transformation vector is orthogomal to
the first., With this restriction, the variance of the squared elements of
the next factor vector is a maximum. We continue in this way until we have
found the last factor.

18.2,2 Simultaneous Fector Varimex. In this model we start with an

approximation of some sort to the simple structure matrix of factor loadings.

We then solve for a second approximation to the factor loading matrix which
will satisfy the varimex criterion. We thus proceed by successive approxi-
mations to get factor loading matrices which will yield better and better
approximations to the matrix which ultimetely best satisfies the varimex
criterion.

The restriction for each approximation is always that the transformas-
tion matrix for that approximation is orthonormal. The procedure therefore
yields all of the final simple structure factor loading vectors simultaneous-
1y, rather than one at a time,

18.2.% The Successive Factor General Varimax. This method is like the
successive factor varimax, vhich gets one factor at a time and maximizes the
variances of the squared factor loadings, except that we require that eome

even power of the factor loading elements be positive. This even power may
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be any value not less than unity. In perticular, we can require that the
variance of the absolute values of the factor loadings be maximum,

18.2,4 Simultaneous Factor General Varimax, This model is similar to
the one discussed in'Secbion 18,2.2 in that, by successive iterations, the
simple structure factor loading matrix is solved for by approximations to
all of the factor vectors at one time. It is similar to the model discussed
in Section 18.2.3 in that the criterion which is maximized is a genegaliza-
tion of the variance of the squared factor loadings. Here again, we maxi-
mize the variance of some positive even power of the factor loadings, where
the power is not less than unity.

As will be seen in the mathematical proof, Section 18.7.4, one may take
a positive even power which in the limiting case approaches the absolute
value of the factor loadinés. On the other hand, one could maximize the
variance of the fourth powers, or the four-thirds powers, or any other powers
in vhich the numerator of the exponent is even and the denaminator odd and
less than the numerator. It can be seen that, if the numerator of the ex-
ponent is an even number approaching infinity, and the 0dd number is slways
one less than the numerator, an element raised to this power would approach
the absolute value of the element.

18.3 fThe Successive Pactor Varimax Solution

18.3.1 Characteristics of the Method. It has been indicated that the
successive factor varimax solution does not give the same gnswer as the method
of Kaiser, in which the transformations are made two vectors at a time. Actu-
ally, in the former case the factor loadinmg vectors for the transformed solu=

tion tend to come out in the order of the variance of their squared loadings.
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. This may not always be the case, as the final result may depend somewhat on
the approximation one starts with. There is currently no mathematical proof
to indicate whether, or under what conditions, this might be true.

Perhaps the chief advantage of this method is that the simple structure

factors tend to come out in the order of clarity of interpretation, so that
one may neglect the factors which appear later in the solution if they seem
to be too obscure or ambiguous. The method is different in this respect from
Kaiser's, since the ambiguity of the simple structure factors for his method
seems to be spread over all the factors approximately equally.

18.3.2 Computational Equations

18.3.2a Definition of Notation

18 is the arbitrary factor matrix.

‘ H is the orthogonal transformation matrix.

e i P AP et ey

b is the simple structure factor matrix.

b(z) is a matrix whose elements are the second powers of the
elements in b,
Q_S_), is a matrix whose elements are the third powers of the

elements in b.

18.3.2b The Equations

PR U (18.3.1)
L -\/‘(1’ a) (al l)
Vo= a W (18.362)
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(18.3.3)
(18,3.L)
(18.3.5)
(18.3.6)

(18.3.7)

$18.3.8)
(18.3.9)

(18.3.10)
(18.3.11)
(18.3.12)
(18.3.13)

(18.3.1k)

(18.3.15)
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& = 8-D 1 H’l
VoS 1a¥ b
1VL‘ = min iV
i s
. < ol
AT T L I
2)
\ (3) S Qi
i = sb,.i - sb.i n
_ ! ‘
s%.1 = 12 Py

s i
B = §I{’»i‘
s .1 Sai

s+1%.4 = 18 &1

i - - U
i+la = ia b;i Hai

(13.3916)
(18.3.17)

(18.3.18)
(18.3.19)
(18.3.20)
(18.3.21)
(18.3.22)
(18.3.23)
(18.3.24)
(18.3.25)

(18.3.26)

18.3.3 Computational Instructions, We begin with an arbitrary factor

loading matrix ,a. Kaiser has recommended, and the practice seems to be

="

generally desirable, that any arbitrary factor loading matrix, before it is

transformed or rotated, should be normalized by rows.

We shall therefore as-

sume, in this and the succeeding models, that the arbitrary factor loading

matrices have been normalized by rows.



69

The rationale for selecting the first epproximation to the first trans-
formation vector is as follows, Ve assume that if there were, in the set of
tests or measures, one which measured one of the primary factors rather ac-
curately, it would have a relatively low correlation with the a&erage of all
the variables, Therefore we calculate a normalized vector of the average of
the factor loadings by columns, es indicated in Eq. (18.3.,1). The right
hand side of this equation gives in the numerator a column vector whose ele-
ments are the sums of the column eléments of the factor loading matrix 1%
As can be seen, the denominator scalar of this right hand term is the sggére
root of the minor profuct moment of the vector in the numerator. Therefore,
the W column vector on the leff of Bq. (18.3.1) is a normal vector.

In Eq. (18.3.2) we calculate the vector Ve This is the factor loading
matrix e postmultiplieé by the vector W of EZT (18.3.1). This now gives a
vector ;; correlations of the average of all the tests with each of the
measures. Presumebly, that variablé which correlates lowest with this aver-
age would be a relatively pure measure of a factor,

We therefore look for the lowest element in the vector given by Ed.
(18.3.2). This is indicated in Bq. (18.3.3). We use the subscript %& to
indicate the position of this lowest value. )

We then take the Ll row vector of the 1® factor loading matrix as the
zero approximation to ;;; first vector of tgg transformation matrix H, as
indicated in Dg, (18.3.4),

Next we postmultiply the factor loading matrix by the vector indlcated
in Bq. (18.3.4)., This gives the first approximation to the first transformed

factor loading vector, as indicated in Egq. (18.3.5).
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Then we calculate the first approximation to a p vector, as shown in
Eq. (18.3.6). On the right hend side of the equation, the first temm is a
vector whoge elements are the cubes of the elemen%s‘@f the vector calculated
in Eq. (18.3.5)., The second term on the right of Ea. (18.3.6) is the vector
caleulated in Eq. (l8.5.5),multiplied by a scalar quantity which is the aver-
age of the sums of squares of the elements of the vector in Eq. (18.3.5).
This second vector is subtracted from the first.

Next we calculate the first approximation to the U.l vector, as indi=-
cated in Eq. (18,3.7). This is the transpose of the f;:zgr loading matrix
postmultiplied by the vector calculated in Eq. (18.3.6).

We now caiculate a scalar quantity as in Eq. (18.3.8). This is the
square root of the minor product moment of the vector calculated in Eq.
(18.3.7).

Next we caleulate the first approximation to the first transformation
vector as in Bq. (18.3.9). The vector calculated in Eq. (18.3.7) is divided
by the scalar calculated in Bq. (18.3.8). We see, therefore, that the vector
calculated in Eg. (18.3.9) is a normal vector.

We now calculate the second approximation to the transformed factor load-

ing vector b ,. As indicated in Bq. (18.3,10), we postmultiply the arbitrary

factor leaaiﬁg‘ma%rix by the vector calculated in Bg. (18.3.9).

We continue to calculate successive approximations to the first ﬁr&nés
formation vector ﬁ'l and the first simple structure factor vector Eg%f as
indicated in Ean‘?Eé.Sall) through (18,3.15). These equations aréi%he same
as Bge. (18.3.6) through (18.3.10), except that the prescript of 1 has been

changed to the geneval subscript g, which means the s approximation.
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The stebilization limit may be based on the scalar @ indicated in Egs,
(18,3.8) and (18.3.13), When this scalar has stabilized to a sufficient de-

gree of accuracy, we may assume that the H , vector is sufficiently accurate,

1
and therefope thet the b 1 vector is also sufficiently aeccurate,

|

We then calculate arﬁesidual factor loading matrix, as indicated in Eq.
(18.3.16). The first term on the right side is the factor loading matrix 2
with a presceript 1. We use this prescript to show that it is the original
arbitrary factor loading matrix, rather than some residual matrix derived
from it. The second term on the right of this equation is the major product

moment of the factor loading vector b 1 @nd the transformation vector H 1°
This major produet is subtracted from the factor loading matrix to give a

residual matrix 2&.

Ve are now féady to begin the computations for the second simple struc-
ture factor vector PAE’ and the second transformation vector H,g' We require
a Tirst approximatio;mto the H,g vector, This is accqmplishe;—;& consider-
ing Bq. (18.3.17). Here for ;;: subscript i we substitute 2. On the right
hand side of the equation this gives as the first term lY’ which we calcu~
lated in Eq. (18.3.2), To this is added b,;’ calculateg-in the previous
cycle of computations, to give the vector-§T§ith a prescript of 2,

We now consider Eq, (18,3.18) in which the 1 subscript takes the value
of 2. This equation means that we find the smallest value in the vector cals

culated in. Bg, (18.3.17) and call this the L, position.

Having identified this position, we then take as our zero approximation
to the Hig vechor the L2 row of the residual factor loading matrix o8 galeou=
lated in Eq. (18.3.16). This is indicated in Bq. (18.3.19).

=]

P



;
-

72

Next we calculate the first approximation to b p 88 indicated in Eq.

(18.3.20), in vhich { = 2. The right hand side of this equation shows that

ve postmultiply the matrix calculated in Eq. (18,3.16) by the vector for

i =2 from Bys (18,3,19).
For the computation of the s approximation to the ith transformation

vector H,i’ and the s+l approximation to the ith factor loading vector b.i’

we now have the series of equations (18.3.21) through (18.3.25). T
Eq. (18.3.26) shows the general equation for calculating the i+l re-

sidual factor loading matrix . .a from the ith residual factor loading matrix

i+
.8, the ith factor loading vector b {9 and the ith transformation vector H 1°

18.3.4 Numerical Exemple. We shall use the same numerical example
throughout to illustrate the various models in this chapter.

We begin with the first three factors of the principal axis factor load-
ing matrix vhich are given in.Table 18,3.1.

Table 18.3.2 gives the final matrix H which transforms the arbitrary
matrix g to the varimax simple structure matrix b.

Table 18.3.3 shows the final approximation to the varimax factor load-
ing matrix. It can be verified that the rows of this matrix are normalized,
If desired, they may be scaled back to the variances of the rows of the

principal axis matrix whose transpose is given in Teble 18,3.1.
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Table 18.3.1 - Transpose of Principal Axis Factor Loading Matrix

0.717 0.740  0.773 0.556 0.46% 0,518 0.640 0.615 0,715
0,493  0.478 0.296 -0,649 -0,744 -0,694 0.080 0.166 0,03k

Table 18.3.2 - Final Trapsformation Matrix H for Successive Factor
Varimax Solution -

0,502 0,702 0,505
-0.842  0.531 0,098
0.199 0.475 -0.857

Table 18.3.3 - Final Varimex Factor Matrix b for Successive Factor
Varimax Solution )

0.016 0,993 0,118
0.035 0.987 0,15k
0.238 0.968 0,077
0.978 ©0.09% 0,185

1.000 0,018 0,006
0,995 0,095 0.03%5
0,157 0,24k  0.957
0,051 0.253 09966
0,390 0.384% 0.837
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18,4 Simultaneous Factor Varimex Solution

18.4.1 Characteristics of the Method, The computational procedures
in this method are essentially different from those of the method just de-
scribed, Succesgive iterations are required, but we iterate simultaneously
to all of the factor vectors of the b or varimax matrix, rather than getting
one vector at a time, This method of solution should give exactly the same
results, within limits of decimal error, as Kaiser's (1959) computational
procedure. It appears to have the advantage that the computations are self-
correcting and that it does not accumulate decimal error. The time required
for the computations, as compared with the Kaiser method, has not been ac-
curately determined, but it appears that for small matrices the Kaiser method
may be slightly faster, and for larger matrices this method ma& be slightly
faster.

One of the characteristics of the method is that each iteration reqpireé
the basie structure solution of the matfix whose order is equal to the number
of factors, For high speed computers, however, this is not a serious restric-
tion, since the number of factors would ordinarily not be over 10 or 15 at
most, and available computer programs are extremely rapid for calculating
the basie structure factors of matriceé of this order.

18.4.2 Computational Bauations

18.4.2a Definition of Notation

& B, b, p‘??, @‘?? are the same as in Section.18.3.2a.
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18,%4,20 The Equations
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to the simple structure factor loading matrix.

(18.4.1)

(18.4.2)

- (18.4.3)

(18.4.4)

(18.4%,5)

(18.4.6)

(18.4.7)

(18.4.8)

(18.4.9)

(18.4%.10)

18.4.,3 Computational Instructions. We begin with a first approximation

This could be the normalized

It may be better to start with a more ac~

curgte approximation, such as some binary hypo%hesis method, as discussed in
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the previous chapter.

The first step in the computational cycles is indicated in Eq, (18,4.1).
On the right hand side of this equation we have as the first temm a matrix
whose elements are the cubes of the elements of the first approximation to
the b matrix. The second term on the right is obtained by postmultiplying
the first approximation to the b matrix by a diagonal matrix. This diagon-
al matrix consists of the diagonal elements of the minor product moment of
this approximation to the b matrix, divided by n, the number of variables.

The next step is indicated in Bq. (18.4,2). Here we have the first ap-
proximation to a C matrix which is the minor product moment obtained by post-
multiplyiﬁg the transpose of the a factor loading matrix by the B matrix of
Eq. (18.k,1).

The next set of computations is indicated by Eg. (18.4.3). We get the
minor product moment of the matrix calculated in Eq, (18.1'“2) and find its
basic structure factors Q and 15\._2_, as indicated on the right hand side of
this equation,

We then get the second approximation to the transformation matrix, as
indicated in Eq. (18.4.4), Here we postmultiply the C matrix of Eq. (18.4.2)
successively by the factors Q, _;Ai s 8nd @', This second approximation to
the § matrix is now ovthonomnal,

The second approximation to the b matrix is given in Eq. (18.4.5). This
18 the factor loading matrix a postmultiplied by the matrix of Bq. (18.L.k).

The general eguations for the i+l approximations to the H and the b
matfiees arve given in Bgs, (18.4,6) through (18.4,10), which are analogous
to Bas. (18.4.1) through (18.4.5)., The subscripts 1 and 2 have been replaced
by i and 141,
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18.4.4 Numerical Example, We begin with the same factor loading
matrix in this numerical example as in the previous one,

Table 18.4.1 gives the final approximation to the varimax transformas=
tion matrix H. Intertiediate approximations are not given, although they
could be readily outputed from corresponding Fortran program.

Table 18.4.2 gives the final approximation to the varimax factor load-
ing matrix, Here, too, the outputing of intermediate approximations may be
readily inserted in the Fortran program. It can be seen that, aside from
the order of the factors, the loadings do not differ markedly from those in
the previous section. With other data the results may differ more for the

two methods. As in the previous section, the matrix is normal by rows.
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Table 18.4,1 - Final Approximetion to Trensformation Matrix E
for Simultaneous Factor Varimax Solution -

Table 13.4,2 - Final Approximation to Varimax Factor Matrix b
for Simultaneous Factor Varimax Solution

0.980 0.001
0.961 -O 225
-0, O‘}-I- 0,969
- 0,998
0.991
175 <04
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18.5 The Successive Factor General Varimax

18.5.1 Characteristics of the Method. This method is like the one dis-
cussed in Section 18.3, except that now instead of maximizing the variance
of the squared factor vector elements, we solve for one vector at a time so
as to meximize the variance of scme power of the elements in which the power
is the ratio of an even number to a smaller odd number. The computations
are essentially the same as for Section 18.3 with the difference that, hav-
ing chosen a particular povwer, we have the problem of finding the required
powers of elements, either by means of tables of logarithmic and exponential
functions or by means of computer program statements,

18.5.2 Camputational Equations

18.5.2a Definitien of Notation

18 b, and H are the same es in Section 18.3.2a.

St

18.5.20 The Equations

B, = sb(%"l) sb(giel) lisbjg (18.5.1)
[ X [ ] ‘ ,7,,ﬁ,
T =1 (18.5,2)

. (18’53ih)
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S+1b’1 ® 13, SH-:L (10505)
= 2P By (18.5.6)
L EFL IR R (18.5.7)

. bR 08 e s

18.5.3 Computational Instructions. In this model we may let the power
of the transformed factor loading elements be any positive number k greater
than unity which may be expressed as the ratio of an even to an odd integer.

We begin with Eg. (18.5.1), Heve we indicate the s approximation to &
g vector, which is analogous to the g vector which we calculated in Section
18.3. We assume that some approximation to the transformed vector is avail-
able. As a matter of fact, we can use the methods of Section 18,3 to get this
approximation. We raise the elements to the 2k-1 power to get the first
term on the right of Bq, (18,5.1), in which the subscript s takes the value
1, The second term on the right consists of the approximation vector with
elements raised to the k-1 pover and multiplied by a scalar which is the mean
of the kth power elements of the veotor.

Eq. (18.5.2) is obtained by postmultiplying the transpose of the arbit-
rary factor loading matrix by the s approximation to the E‘& vector to give

an 8 spproximation to a U , vector.
[

——

A scelar guantity is then oslculated as ip BQ, (18.5,3), which is the
square root of the minor product moment of the vector calculated in Bg.



The vector calculated in Eg, (18.5.2) is divided by the scalar calcu-
lated in Eq, (18.5.3) to give the s approximation to the first transforma-
tion veetor of H; &g indicated tn Bq. (28.5.4),

The g+l approximation to the fiwst factor loading b vector is givem by
Eq, (18.5.5). This is the factor loading matrix postmultiplied by the vector
calculated in Eq, (18.5.4). When the iterations stabilize sufficiently, as
indicated by some tolerance limit set on the g scalar of Eq. (18,5.3), we

may take the resulting b .

approximation as the first simple structure factor

vector,

We then calculate a residual matrix as in Eq. (18.5,6). This is ob-
tained by subtracting the major product of the first simple structure factor
loading vector and the corresponding transformation vector H from the arbit-
rary factor matrix .a.

We now operate on this new matrix with Egs. (18.5.1) through (18,5.5)
in exactly the same way as we did on the original matrix, To get a first
approximation we may use the method of Section 18,3,

The general equation for the i+l residual of the arbitrary factor load-
ing matrix a is given by Iq. (18.5.7). ’

18.5.4t DNumerical Example. We begin with the seme data as in Section
18.3.4 and take k = %g. Here we indicate only the vesults of the method.
The intermediate computations ave not given.

Table 18.5.1 18 the final approximation to the orthonormal transforma-
tion matrix.

Table 18.5.2 is the finsl gpproximation to the varimax matrix b, It

pust be remembered that this is the transformation such that the variance of
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the %% power of the elements in the b matrix is a meximum for each column--

with the restriction, of course, that the columns were obtained one at &
time. It is of interest to compare this matrix with Table 18.3.3 of Section

18.3.4.
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Table 18.5.1 - Final Approximation to Transformation Matrix

04735
0.089
-0.672

H for Successive Factor General Varimax Method

4k - 10
vithk = 3
0.412 0.538
-0.846 0.526
0.339 0.659

Table 18.5.2 - Final Approximetion to Varimax Factor Matrix

0.358
0.395
0.349
0.356
0.171
0.218
1.000

0.99k .

0.957

b for Successive Factor Genmeral Varimax Method
withk = 2

3,
'Oo 003- 0 . 93,""
0.010 0.919
0.223 0.910
0.93% 0.003
0.985 =0.026
0.975 0.0k2
‘Ooooh '0.001
«0.110 0.010
0.246 0,15k




18,6 Simultaneous Factor General Varimax

18.6.1 Characteristics of the Method, This method is the same as the
one discussed in Section.18.k, except that now ve maximize the variance of
any even power of the transformed elements we wish, as long as the power is
greater than 1., The method, like that of Kaiser (1958), solves simultaneous-
1y for all of the transformed simple structure vectors, rather than for one

' at a time. It has the advantage that decimal error is not accumulated as it

is in Kaiser's method. It has the disadvantage that, if the powers are not
whole numbers, either tables or library programs for computers must be used
in calculating these powers. However, this is not & serious disadvantage
with the computers, since simple Fortran statements may be written for any
specified powver.

18.6.2 Computational Equations

. 18.6.2e. Definition of Notation

a, b, and H are the same as in Section 18.3.2a.

sb is the s approximation to b.

b(ak'l)

s is a matrix whose elements are those of sb raised to the

2k-1 power.

SH is the 8 approximation to the transformation matrix.
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18.6.2b The Equations
D, q (k)
) 22

B = sb(2k°l) - sb(k'l (18.6.1)
&L = @ B (18.6.2)
L R S (18.6.3)
A = ((c 9 d&*) Y (18.6.4)
gp = & gl (18.6.5)

18.6.3 Computational Instructions. In the example of the model dis-
cussed here, we shall again assume that it is the variance of the kth power
of the. elements in the transformed factor vectors which we wish to maximize.

Ve may begin with the arbitrary factor loading matrix itself, presumably
normalized by rows. We consider Eq. (18.6.1) for the prescript s equal to 1.
The first term on the right is a matrix whose elements are the 2k-1 powvers

of the elements in lb’ The second term on the right has for the first factor

a matrix whose elements are the k-1 powers of the elements in b, This matrix
is postmultiplied by a diagonal matrix whose elements are the means of col-
umns of a matrix obtained by raising the elements of b to the kth power.

Eq. (18.6.2) indicates the computation of a matrix C, This is the trans-
pose of the arbitrary factor matrix, postmultiplied by the § matrix of Eq.
(18.6.1),

Eq. (18.6.3) is the minor product mement of the matrix obtained in Eq.

(18.6.2), and also indicates the solution for the basic structure factors,
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Q and 9_2_ » of this matrix. This involves, as in Section 18.4, basic structure
computations outlined in earlier chap£ers.

The calculation of the s approximation to the H matrix is given in Eq.
(18.6.4). This is obtained by postmultiplying in turn the C matrix of Eq,
(18.6.2) by the Q matrix shown in Eq. (18.6.3), by the inverse of the A
matrix of Eq. (18.6.3), by the transpose of the Q matrix of Eq. (18.6.3).

The s+l approximation to the transformed factor loading matrix is given
in Eq. (18.6.5). This is the arbitrary factor loading matrix a multiplied
by the matrix of Eq. (18.6.4). A stabilization limit may be set on the sum
of the elements of the basic diagonal in Eq. (18.6.3). These will in gen-
eral increase asymptotically to an upper limit.

18.6.4 Numerical Example. We begin with the same principal axis metrix
as in the preceding sections.

Table 18.6.1 gives the final approximation for the transformation matrix

Table 18.6.2 gives the final approximation for the varimax factor matrix
b. The factors can readily be identified with those from previous solutions
in this chapter, even though the results expectedly differ by more than deci-

mal accuracy.
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Table 18.6.1 - Final Approximetion to Transformation Matrix H

for the Simultaneous Factor General Varimax
Solution with k = -J-'SQ
0.670 =0,476 <0569

Table 18.6.2 - Final Approximation to the Varimax Factor Matrix

b for the Simulteneous Factor General Varimax
Solution with k = .52

0.982 0,002 0.188
0.974 -0.0L7 0.22k
0.963 -0.223 0.153
"000 0‘0 971 '0 0223
-0,028 0.999 -0.040
‘0 ‘.'elol# 0 . 992 -o . 076
0.177 <0.123 0.976
0.185 -0.017 0.983
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18.7 Mathematical Proofs
.18.7.1 Successive Factor Varimax

let
b = aH (18.7.1)

and b(a) be a matrix whose elements are the squares of those in b, Consider

the funetion

bf-i)’-(I - %-ly) bfi) = = max . (18.7.2)

21
This is the well known varimax criterion of Kaiser (1958) which maximizes

the variance of the squared factor loading vectors in b. We impose the re-

striction that

We let
Dy N l = b.l (18.7.4)

From Egqs. (18.7.1), (18.7.2), (18.7.3), and (18.7.4) we write

o

l,

(I--ﬁiﬁ—')Db a R

ol

\lll=H’ a’ D H

'y b M (18.7.5)

-". H
.l .l .l .l

where xl is a lLagrangian scalar,

dmi—

Differentiating Eq. (18.7.5) symbolically with respect to H: 1 and equat-

ing to 0, we have

Ay 22 i
Y1 L1
s 7 = 2 [(af Db.l (I-==)p, aH,-H, Ml 0 (18.7.6)

L]
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. From Egs. (18.7.1) and (18.7.6)
v (3 Pt
o (b3 s = By (26.7.8)
Let
/. b
L (3) b1 o
) B.l = b.l -b.l — (18.7.8)
From Egs. (18.7.7) and (18.7.8)
al By = B3 M (18.7.9)
We start with a first approximation by considering, say,
W= el (18.7.10)
.. /1 aall :
and find the smallest element in lV s say 1VL' We may then let
1 = e (18.7.12)
We have as the general iteration equat;ons,
L -}
- (3) s:?.,l ,! c\l 1, y
o = L1 TP (18.7.13)
4 (18.701“')
(18.7.15)
(18.7.16)
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. From Egs. (18.7.1) and (18.7.6)
of ‘(“"533.) ‘_b.l,,f.;l_;_:_l_) = Hih (18.7.8)
Let
From Egs. (18.7.7) and (18.7.8)
e’ By = E) M (18.7.9)
We start with a first approximation by considering, say,
Woe Bl (18.7.10)
- /1 aall
’ 1V = a¥W (18.7.11)
.and find the smallest elqm,ernt in J.V s B8Y :LVL' We may then let
Py = e | (18.7.12)
We have as the general iteration equations
Pa = sb(.fls.) LY gi%i!; (18.7.13)
(18.7.14)
(18.7.15)
(18.7.16)




e asA—— o < 2

90
To get 3-2. we require that
H:Q H, =0 (18.7.17)
H:E B, = 1 (18.7.18)
We could then write
Vo = Fp - RH H M, -H L H o0y (18.7.19)

vhere g, is analogous to Eq. (18.7.2), and where Mpp 8nd A, are Lagrangian

———

multipliers.,
Differentiating Eq. (18.7.19) symbolically with respect to H' p and

equating to O gives, after solving for \,, by means of Eq. (18.7.17),
’ 22

(T - B, Anfl) al Bp, = Hj,h (18.7.20)
where
L
o = b(Z’ - b o =Bk (18.7.21)

But from Eq. (18.7.1)

(1 -H 1 H’l) a! = a' -H, b’l (18.7.22)

If we let

e = a-b,H, (18.7.23)

2
we may write Eq. (18.7.20)

g Bo = Hoh (28.7.24)
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We may now solve for H o iteratively as we did for H 12 except that

we use Egs., (18.7.21) and V(Vié.7.21+‘). As a first approxirﬁa.fion to H , ve

consider
o= VD (18.7.25)

Find the smallest value in ‘2V » say, BVLQ’ and let

omsmgeiin

o = %, . (18.7.26)

In general, then,

1. % 1% A (18.7.27)
., b
_ 4(3) 8 .4 8 .1
SB'i -. Bb.i - sb.i n' (1807028)
ia' b = V.1 (18.7.29)
U
. = ———"w?'}« ' (18.7.30)
/su.i sU.i .
142% = 4@ Py H | (18.7.51)

18.7.2 Simultaneous Factor Varimax
Let
P = al (18.7.32)

and b(z) be a matrix whose elements are the squares of those in b. Consider

the funection

1)(5)1(1 ) %_;_') bff).“ o, = max (18.7.33)
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We require that
HH = I (18.7.34)

From Egs. (18.7.32), (18.7.33), end (18.7.34) we write

-5 o _Ly - : BB

Wy =H, e % (r-==) Pp  BFg mH g By Myt 321 HlgHgty

# (18.7.35)
where the }lﬂ. are Lagrangian multipliers,
Let
v, b

= (3 ol St ‘

By = B3y -b, (18.7.36)

Differentié;ting Eq. (18.7.35) symbolically with respect to H’., equating to

0, and using Eq. (18.7.36), we have

a' B, -Hr,; =0 (18.7.37)

Or, setting up the complete matrix,
al p-HL = 0 (18.7.38)

where now )\ 1s a matrix of Lagrangian multipliers, and where because of Eq.

(18.7.35),
Moo= (18.7.39)

and from Eq. (18.7.36)

D .
B = p3) _p 2LD (18.7.%0)
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From Eq. (18.7.38)

a' pA* = & (18.7.41)

let

al B = PAQ’. (18.7.42) -
be the basic structure of gLJg.:
From Eq. (18.7.42)

1 U (18.7.43)

Because of Eqs. (18.7,3h) and (18.7.39), the only &i which will satisfy Eq.

(18.7.43) is

2 os Aty (18.7.44)
From Egs. (18.7.43) and (18.7.44)

H = PgQ (18.7.45)
We let

C = a'p (18.7.46)
From Egs. (18.7.42) and (18.7.46)

oa’q = che (18.7.47)

From Egs. (18.7.42) and (18.7.46)
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P = C Q Ail (180701"8)
Frem Eqs. (18.7.45) and (18.7.48)
H = cqate , (18.7.49)

The iteration procedure is as follows. Given the ith approximation to

b, then
D, b
N ¢-)) 1° 4 ‘
L LR IL e (18.7.50)
¢ = &' B (18.7.51)
2 o ' | |
19487 ,9 = 400 C (18.7.52)
: o .
gl = 404048 ,9 (18.7.53)
141 = 8yl (18.7.54)
18,7.3 Successive Factor Generasl Varimax
Let
by o= 8l (18.7.55)
2 ml
ko= 2’:52'-1 (18.7,56)

2

are integers and m, < my. Let b(g) be the vector whose

where ml and m

elements are the kth pover of those in b ,. Because of Eq. (18.7.56) ell

elements of b(i) are nonnegative.,

Consider

bfi)l(l ) %E%!) bSk) = 5, = max ' (18.7.57)
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with the constraint
! : - E ‘ 3

BoE, =1 (18.7.58)
Let '

¥ o= 8y -k B, Hy M (18.7.59)
where A’l is a Lagrangian scalar,
From Egs. (18.7.55) and (18.7.57)

k-1 11/, k-l _ ‘ \
n:l al A (x - === ) Db.l aH, = ¢ (18.7.60)

From Eqs. (18.7.59) and (18.7.60) we may write the maximizing equation

S ARRILE Sl L L S LRI
’l * . L[] .
We let
: ll b(k)
B, = v _plkel) .l (18.7.62)

From Egs. (18.7.61) and (18.7.62)

alpy = Hyn (16.7.63)

. 171

We may begin with some arbitrary b 12 58%s lb 1’ and set up the iterative
equations '
o1 bl
By - pl2D) o) _gal (18.7.64)
e "B, = U, ' (18.7.65)
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(18.7.66)
1 = & H, (18.7.68)
after o stabilizes, we calculate
g® = 8-=D, H:l (18.7.69)
This is then substituted for a in Eqs. (18.7.65) and (18.7.68) to get b o
The general equation for Eq. (18.7.69) is, of course, —-
118 = 48 -0, B (28.7.70)

To calculate the elements in ,sb raised to the respective powers, we

i
proceed as follows. We let B be any element of sb 1° Now because of Eq.

(18.7.56)

2 (my -mp) +2

Kol = e (18.7.71)
and
2(2m, -m,) +1
2K «)]l = e :l - 'ffrigﬁ'f . (1807072)
2 m, - 1
From Eq. (18.7.71) all ﬁ and _Biki have the same sign as B, From

Eq. (18.7.56) all i are positive. Hence to calculate the several required

powers of B we have

F o= -e.milog {x 10¢ |B]] (18.7.73)
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Bl = antilog [(x - 1) 10g |B|] 1B (18.7.74)
-
3% - antilog [(2k - 1) log |5|] Lgl (18.7.75)

These three powers of B may be readily calculated from tables or from standard
library prégrama for computer installations,

18,7.4 Simultaneous Factor General Varimex

let
b = aH (18.7.76)
aml
ko= 2y - 1 (18.7.77)

vhere n, and m, are integers and n, < m, . Consider, then, the generalization

of Kaiser's cﬂterion

tr [b(k)' I - é—%’) b(k)] = max = ¢ (18.7.78)
with the constraint

HEH =1 (18.7.79)

From Egs. (18.7.76), (18.7.77), and (18.7.78)

!
su, e Dt @ity gk lan, = 4 (18.7.80)
oi Db.i n Db‘l .1
Consider
¥ = g -k tr (H H)) (18.7.81)
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vhere )\ is a symmetric matrix of Lagrangien multipliers.

From Eqs. (18.7.80) and (18,7.81) we may write

- K AP S it (x-%’)n’g'lan -Er,l = 0 (18.7.82)

3 H, " ‘ i ot
Let
: 1! b‘(k
USROS o

From Eqs. (18.7.82) and (18.7.83)
a' B.i - H k.i = 0 (18.7.8!&)
.or for the matrix form

a' ﬁ = H X (1807.85)

By the methods of the previous section, we may let the basic structure of

g B be

a'p = PoQ | (18.7.86)
From Eq. (18.7.85)

a At = ® (18.7.87)
To satisfy Eqs. (18.7.87) and (18.7.79)

H=a paa q (18,7.88)

We may begin with some arbitrary approximation to b in Eq. (18,7,76),
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-

say, ,b. From “b and Eq. (18.7.83) we calculate 1B+ Then from Eg. (18.7.86)

P.ALQ

{ = .
al 1B = P38,

and from BEq. (18.7.88)

= !
i = g F 0
In general, then,
1! b(k)
B, = pl&-1) _ (k) 8 o1
7.1 8,1 8 1 n

! = U
o B = PAQ

-]
L]

! 3 o
8 & SB SQ SA SQ

(18.7.89)

(18.7.90)

(18.7.91)

(18.7.92)
(18.7.93)

(18.7.94)

The several required powers of the b , in Eq. (18.7.91) can be calculated

a8 in the previous section.



CHAPTER 19
DIRECT VARIMAX SOLUTIONS

We saw in Chapter 18 that we may begin with any arbitrary factor load-
ing matrix, and transform it to a simple structure varimax factor loading
matrix by means of a square orthonormal transformation. In this chapter,
we shall see how we may avoid the intermediate step of first calculating en
arblitrary factor loading matrix, such as in the principal axis, multiple
group, group centroid, and veriations of these methods.

19.1 Characteristics of the Method

19.1.1 No Arbitrary Factor Matrices Required. In the procedures out-
lined in the following sections, we shall see how we may operate directly on
the correlation matrices, or the score matrices from which they are derived.
Strangely enough, this seems to be a novel approach for factor analysts.

The tradition has been to calculate first some arbitrary factor loading
matrix, such as the principal axis, centroid, or other type of arbitrary
factor loading matrix, whose major product moment gives a reasonable approxi-
mation to the correlation matrix. These arbitrary matrices are then trans-
formed by the procedures outlined in the previous chapter or by other analy-
tical, semianalytical, or graphical methods. Actually, the transition from
operations upon the arbitrary matrices to achieve simple structure matrices,
to that of a direct solution for the simple structure matriées from the cor-
relation or data matrices, is perfectly natural, both from a logical end a
mathematical point of view,

19.1.2 Analytical Methods. As a matter of fact, however, the methods
of direct solution for simple structure factor matrices are applicable pri-

marily to those procedures and rationsles which use analytical, rather than
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graphical or Judgmental, methods. It should be‘pointed out that the method
for achieving simple structure by means of a binary hypothesis matrix, such
as discussed in Chapter 17 for the special case of the multiple group method,
might be regarded as a special case of a direct solution from the correlation
matrix. Here, however, the rationale and procedure is essentially different
from that of the methods to be discussed in this chaepter,

All of the methods discussed in this chapter are based on the analytical
procedures of the varimax method, and constitute applications of the ration-
ale of this method to the correlation and data matrices., The direct solu-
tions for simple structure matrices need not be limited to the varimax type
of solution, However, as in the previous chapter, they will be so restricted
in this chaepter because of the practical difficulties encountered with other
alternatives to the varimax solutions which have been developed and experi-
mented with so far.

19.1.3 Rank Reduction Solutions. All of the solutions considered in
this chapter are of a rank reduction type. This means that the rank of the
residual matrix, following the solution of any factor vector, is one less
than that of the previous residual matrix, or, in the case of a factor matrix,
its rank is equal to that of the correlation matrix less the number of factors
in the factor matrix.

19.1.4 Iterative Solutions. All of the solutions outlined below are
of an iterative type. In this respect, they differ from the direct solution
considered for the multiple group method in Chapter 17, in which a binary
hypothesis was used. Here, we recall, no successive approximations were re-

quired, except for the orthonormal transformation.
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All of the iterative solutions required for the various types of direct
solutions outlined below can be shown to be special, though rather compli-
cated, eigenvector or basic structure type solutions in which we have a sym-
metric matrix, some of whose elements are functions of its own basic ortho-
normal and basic diagonal elements. Therefore, the iterative procedure may
be somevwhat more involved than in the case of a stralghtforward basic struc-
ture solution, in which the elements of the symmetric matrix whose basic
structure is desired are constent values. As a matter of fact, this type

.of basic structure solution is characteristic not only of the methods.of “this
chapter, but also of those of the previous chapter, in which the solutions
are not applied directly to the correlation or data metrices but to some
arbitrary factor metrix.

19.1.5 Utilization of Information. One of the distinguishing charac-
teristics of the methods outlined in this chapter is that, in a sense, more
of the information in the correlation or data matrix is utilized than in the
methods of Chapter 18, Implicit in the methods of both Chapters 17 and 18
is the assumption that the factor loading matrix accounts for all of the
significant or systematic nonrandom information inherent in the correlation
or data matrices. This assumption may not be valid in many cases.

In the methods outlined below, all of the information in the data or
correlation matrices is utilized in the determination of the simple struc-
ture varimax factor matrices or vectors, This may be regarded as an advant-
age, from the point of view of information utilization; or it may be regarded
as a disadvantage, if one takes the position that the information left over

after the major product moment of the factor leoading matrix is subtracted
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from the correlation matrix essentially represents error or random variation.
In this latter case, one may argue that the application of direct varimax
methods to the correlatiop or the date matrices may be spuriously affected
by such random variation. A great deal more theoretical and experimental
work needs to be done before the relative validity of these alternative
points of view can be established. In general, the criterion of invariance
from one sample of entities and attributes to another would be a relevant
consideration here., Presumably, if the direct methods turn out to yield
more consistent results from one sample of entities to another, and from
one sample of attributes to another, their superiority would be definitely
indiecated.

19.1.6 Results Different from Transformation Solutions. It must be-
come obvious that one cannot expect exactly the same results from the dir-
ect methods outlined below as from the transformation solutions indicated
in Chapters 17 and 18, Even for the direct methods of Chapter 18, in which
we use the same varimax criteria and precisely the same models, one cannot
expect to get exactly the same results as when the criteria are applied to
the correlation or data matrices. The reason for this is, of course, that
we utilize not only the information provided by some arbitrary factor load~
ing matrix, but also informetion inherent in the data or correlation matrix
which has not been reflected in the solution for the arbitrary factor load-
ing matrix.

Only extensive research can tell which of the methods is better from
the point of view of factorial invariance. There is, of course, the question

of which factor loadings make more sense frcm the point of view of the
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particular discipline concerned. But as we have suggested earlier, the de-
termination of whether or not the results make sense for a particular dis-
cipline is subjective. Until the concept is more objectively defined than
it has been in the past, we cannot use the criterion of how much sense the
results make as a basis for comparisen of any of the methods of factor ansly-
sis. '
19.2 Kinds of Methods

For convenience, we may group the verious methods into four classes,
These are (1) the successive factor varimex solution from the correlation
matrix, (2) the simultaneous factor varimax solution from the correlation
matrix, (3) the successive factor varimax solution from the data matrix, and
(4) the simultaneous factor varimax solution from the data matrix, Each of
these classes of solutions may, in the conventional manner, maximize the
variance of the squared elements, or, more generally, the variance of some
other even power, just as in Chapter 18. We shall consider first the con-
véntional type solutions, and then the general type.

19.2,1 Solutions from the Correlation Matrix. As indicated in the
previous section, the direct solutions mey proceed either by operations on
the correlation matrix or by operations directly on the data matrix., The
methods based on eperations on the correlation métrix mey again be of two
kinds, analogous to the two types of varimax rotations for arbitrary factor
matrices, One of these is the successive factor vector method which obtains
a single factor vector at a time, The other is the simultaneous factor matrix
method, which iterates successively to the entire factor loading matrix for

the particular number of factors hypothesized to be significant for a set
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of varisbles.

19.2,2 Solutions from the Data Matrix. One may bypass the calculation
of the correlation matrix and operate directly upon the data matrix. Solu-
tions of this class obviously cannot achieve & net seving in computations
over the number required for the correlation matrix, since, as one may
guess, the computations for the direct varimax from the data matrix involve
more computations than solutions based on the correlation matrix itself.

The question as to which of the methods is most economical from a computer
or cost point of view depends on a number of factors., In general, if the
nunber of cases is not vastly greater than the number of variables, one may
save some time operating direetly upon the data matrix.

In any case, the methods outlined here assume that the data matrix has
been scaled so that the variables have means of O and variances of unity.

It is possible, of course, to work out computational procedures so that the
date matrix need not first be processed to yield a standardiied metric, Such
a computational procedure would incorporate the vector of means and the di-
agonal of standard deviations or variances. These methods, like those in
Section 19.2,1, include the successive factor verimex model and the simul-
taneous factor matrix model, but here they are applied directly to the
scaled data matrix.

19.2,3 The Successive Factor General Varimax Method. The convention-
al or Kaiser varimax method, as we know, maximizes the variance of the squared
factor loedings. This rationale, we recall, may be generalized so that the
variance of any even power function of the factor loading variable may be

maximized. As indicated in Chapter 18, the power should be greater than
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unity. Otherwise, we may get into difficulty with reciprocals of very

small values. The successive factor general varimax procedures may again

be divided into two models, One of these operates on the correlation matrix,
and the other operates directly on the data matrix.

19.2.4 simultaneous Factor General Varimax. Just as we have the simul-
teneous general factor varimax method operating on the arbitrary factor load-
ing matrix, so also we can apply this model directly to either the correla-
tion matrix or the data matrix. In this chapter we shall consider its ap-
plication to both the correlation matrix and the date matrix. The data
matrix is assumed to be scaled so as to give means of O and variances of
unity.
19.> Buccessive Varimax Factor from Correlation Matrix

19.3.1 Characteristics of the Method. We are already familiar with

h some of the characteristics of the successive factor varimax method applied
directly to the correlation matrix. It may be of interest to compare this
method with others, such as the principal axis or centroid, with respect to
the amount of variance accounted for by the successive factors. In the
latter methods, we recall that the amount of variance accounted for tends
to decrease, in general, with the successive factors calculated.

We cannot, however, assert that each varimax factor calculated from
the correlation matrix does account for more of the variance then the sub-
sequent one, We cennot even guarantee that the criterion of maximum vari-
ance of the squared factor loadings will be greater for a given factor

. vector than for one calculated subsequently. The order depends very largely

on the characteristics of the matrix, and also on what is used as a first

A A M RN SO A i > o n
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approximation for any paerticular factor loading vector.

A further reason for the uncertainty of the order of the factors, with
respect to the amount of variance accounted for and the variance of their
sqnaréd factor loadings, is the fact that we are dealing with an eigenvector
or basic structure problem of a very complicated nature. As we have seen,
the model involves symmetric matrices whose elements are functions of its
eigenvectors and eigenvalues., We do not yet have available an adequate mathe-
matrical substructure for a satisfactory undérstanding of what determines the
order in whigh‘the factors will appear,

. 19.3.2 Computational Equations

19.3.2a. Definition of Notation

iR is the gph residual correlation matrix where .R is the correla-

tion matrix itself,

T

sb i is the s approximation to the ith varimax factor vector,

&1 is the amount of variance accounted for by the s approximation

to the ith varimax factor vector.

& is the varimex criterion for the s approximation to the ith

varimax factor vector.

sb(B) is a factor vector whose eleﬁents are the cubes of those
in Sb.i.

19.3.2b The Equations

o]
[

2R "% (11) Pi(sa1) (19.3.1)
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&1 = &P st ' (19:3.2)
P = sbg) - g% 2;12' (19.3.3)
s = BPa (19.3.4)
RN (29.3.5).
sw i .
s+1°,1 s&i (19.3.6)
T o= gR-I (19.3.7)
o = x(® - (19.3.8)
Uo = (19.3.9)
Uy, o is largest element in U (19.3.10)
1.1 = R . . (19.3.11)

19.3.5 Computational Instructions, We begin with a correlation matrix.
The meaning of Eq., (19.3.1) .is as follows., If i = 1, we have simply the cor-
relation matrix. The right hand side of this equation will then be ignored,
because the i -1 wouid be O and have no meaning, that is, it would not be
defined, It is only for i greater than 1 that Eq. (19.3.1) has meaning.

We assume now that we have a first approximation to a factor loading
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vector which will be described in detail in Egs. (19.3.7) through (19.3.11).
Egs. (19.3.2) through (19.3.6) describe the successive cycles for the s ap-
proximation to the ith factor loading vector.

Having given any approximation to the ith factor loading vector, its
minor product moment is calculated as indicated in Eq. (19.3.2).

Next we calculate a vector as indicated in Eg. (19.3.3). This is the
B vector with which we ere already familiar. It is obtained by cubing the
elements of the b vector, and subtracting from it the b vector multiplied
by the scalar in Eq. (19.3.2) divided by n.

The next step is indicated by Eq. (19.3.4), which again is of course
a general equation for the s approximation, It is the product of the ith
residual correlation matrix postmultiplied by the p vector calculated in
Eqe (19.3.3).

lext we calculate the scalar indicated by Eg. (19.3.5). This is the
square root of the minor product moment of the vectors of Eqs. (19.3.3)
and (19.3.4).

The s+l approximation to the varimax factor loading vector for the ith
factor is calculated in Eq. (19.3.6). This is the vector of Eg. (19.3.k)
divided by the scalar of Eq. (19.3.5).

As yet there appears to be no completely satisfactory method for choos-
ing a first approximation to any particular varimax factor loading vector,
including the first one. However, the following method is recommended and
should give good results in most cases.

Consider the correlation matrix with 0's in the diagonal, as indicated

in Eq. (1903-7) .
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First we square each element of the matrix r of Eq. (19.3.7), as in-
dicated in Eq. (19.3.8).

We then calculate a g vector as indicated in Eq. (19.3.9). This is obe
tained by calculating a vector of the sums of the rows of the matrix in Eq.
(19.3.8). From this is subtracted a vector of the squares of the sums of
rows of the matrix in Eq. (19.3.7) divided by n - 1, the number of varisbles.
The U vector is therefore n - 1 times the vector of the variances of the
colunns of the correlation matrix with the diagonal elements excluded.,

In Eq. (19.3.10), we find the largest element in the U vector calcu-
lated in Eq., (19.3.9), and call this the L position.

We then take as the first aéproximation to the first varimax vector
the Lth column of the correlation matrix, as indicated in Eq, (19.3.11).

Using Eas. (19.3.2) through (19.3.6), we then calculate the first vari-
maex factor loading vector by successive iterations until the ¢ scalar of
Eqe (19.3.5) stabilizes to some prespecified degree of accuracy.

Then we calculate the first residuesl matrix by substituting 2 for the
i subseript in Eq. (19.3.1). This residual metrix is simply the original
correlation matrix, less the major product moment of the final approxima-
tion to the b.l vector.,

We now ;;;uireva first approximation to the second varimax factor
vector, We apply the procedures of Bgs. (19.3.7) through (19.3.11) to the
residual matrix.

We continue with Egs. (19.5.1) through (19.3.6), and generalizations'

of Bas. (19.3.7) through (19.3.11), until enough factors have been extracted.
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19.3.4 Numerical Example. In this and subsequent mumerical examples
in this chapter, the presentation of the results will not conform to that
of the presentation of the methods themselves. Rather it will conform to
a computer program sequence which is more efficient for performin;g the com-~
putations included in all of the methods of this chapter. Each numerical
example section will include both the conventional case in which the vari-
ance of squared elements of the varimax factor vectors are maximized, and
a special example of the general case for the 1‘3(2 pover, ‘

The same correlation matrix used in previous chapters will be used for
all of those methods beginning with the correlation matrix. This is repeated
for convenient reference in Table 19.3,.1,

The same data matrix will be used for all methods operating directly
on the date matrix. This matrix yields the correlation matrix of Table
19,3.1, so that the results obtained from the data matrix may be compared
with those obtained from the correlation matrix.

Table 19.3.2 gives the data matrix,

Table 19.3.3 gives the varimax factor matrix fgr three factors obtained
by the successive factor matrix method directly from the eorrelatién matrix,
for the conventional case in which the variances of the elements of the
squared factor loading vectors are maximized.

Teble 19.3.4 gives the varimax factor loading matrix for the successive

10

factor gemeral matrix, where the -3—- power, rather than the square of the

elements, is used,
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Table 19.3.1 - Correlation Matrix

1.000
0.829
0.768
0.108
0.033
0.108
0.298
0.309
0.351

Table 19.3.2

0.128
0.76k4
-0.030
-0 . 2&)
"0 (3 536
-0 . 276
0.057
-0.010
-0.303
0.086
0.16L
0.036

0.829
1.000
0.775
0.115
0.061
0.125
0.323
0.347
0.369

0.768
0.775
1.000
0.272
0.205
0.238
0.296
0.271
0.385

0.108
0.115
0.272
1.000
0.636
0.626
0.249
0.183
0.369

0.033
0.061
0.205
0.636
1.000
0.709
0.138
0.091
0.254

0.108
0.125
0. 238
0.626
0.709
1,000
0.190
0.103
0.291

- Normalized Deviation Data Matrix

0,181
0.740
-0.046
-0.351
-0.306
~0.324
-0.070
-0.140
o0.227
0.057
0.106
-0.07h

0.421
0.563
0. Ol’-l-
-0.326
"0 . l{'29
"0 . 271
0.326
"'O . ol’-l-
-0.003
-0.12h
'0 . lli»2

0.506
‘0 . 387
0.147
-0.023
=0.542
-0.370
0.006
~0.00k
0.029
0.161
0.23k4
0.2u42

0.857
'O . 293
-0.109
-0,109
-0 . 006
-0.225

0.152
-0.258
«0,102

0.073
-0.002

0.023

0.746
-0.202
-0.135
-0.186
-0.153

0.035
~0. 4k
=0.091
-0.125

0.134

o.227

0.192

0.298
0.323
0,296
0.249
0.190
1.000
0.65h4
0.527

0.280
0.261
0.640
0.083
-0.428
0.129
-0.166
-0.410
"0 .
'0 . 082
~0 . 072
-0 . lhe

0.309
0.347
0.271
0.183
0.091
0.103
0.654
1.000
0.541

0.178
0.281
0.091
0.056
-0.4k6
«0.354
-0.200
-0.106
'00067
0.025
-0.119

0.351
0.369
0.385
0.369
0.254
0.291
0.527
0,541
1.000

0.246
0.043
0.661
-0.65h
-0.12k4
«0.033
-0,101
<0.074
-0,009
0.156
0.011

Table 19.3.3 - Successive Factor Varimax Matrix from Correlation Matrix

0.957
0.933
0.887
0.098
0,042
0,100
0.23k4
0.243
0.300

for k = 2
0.003 0.092
0.023 0.127
0.782 ° 0.130
0.921 0.026
0.894  0.044
0.129 0.837
0.058 0.903
0.247  0.527
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Table 19.3.4 - Successive Factor General Varimax Matrix from Correlation
Matrix for k = }370
0.946 -0.013 0.057
0.143 0.663 0.099
0.078 0.991 0.000
0.143 0.769 0,008
0.302 0.123 0.596
0.311 0.067 0.948
0.36F 0.235 0.430
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19.4 Simultaneous Varimax Matrix from the Correlation Matrix

19.4,1 Characteristics of the Method. This method is like the preced-
ing one in that we operate directly on the correlation matrix rather than on
the arbitrary factor matrix; Here, however, we iterate simultaneously to
all of the factor loading vectors which we wish to solve for., It differs
also from the previous method in that we have a-less abjective way for getting
e first epproximation to the factor loading vectors than we did in that method.
It is also essentially different computationally from the preVious method ip
that each iteration involves fhe solution for the basic structure of a sym-
metric matrix, The § orthonormal and Qf.baaic diagonal of this matrix are
required in the successive approximations to the factor loading vectors. In
this respect the method is analogous to tﬁe simultaneous method of Chapter
18.

19.4,2 Computational Equations

19.4.2a Definition of Notation

R 1s the correlation matrix,

sb is the 8 approximation to the varimax factor matrix.

Bb(3) i8s a matrix whose elements are the cubes of those in sb.

D

!
8

b is a diagonal matrix whose elements are the diagonals of
s

~the minor product moment of oo

Q is a basic orthonormal.,

i

2 is a basic diagonal,

D
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19.4.2b The Equations
D
b b
po= PP e (19.4.2)
G = B M (19.4.3)
Q@ A% o = o
QAR = | (19.4.4)
s = ((M Q) sA'l) & (19.4.5)

19.4,3 Computational Instructions., In this method we start with some
arbitrary approximation to the varimax factor loading matrix. This may be
simply the first m columns of the correlation matrix, where m is the number
of factors. In any case, one must make an assumption as to the number of sig-
nificant factors in the data matrix. It is better to overestimate than to
underestimate the number, as some of the factors can later be rejected from
the final stabilized varimax factor loading matrix if they do not seem inter-
pretable or of sufficient importance.

If one has an hypotheéis as to which of the variables represents which
factor, he may select a variable to represent each factor, Then the columns
of the correlation matrix corresponding to these variables will constitute
the vectors of the first approximation to the varimex factor matrix,

We begin then with Eq. (19.4.1) in which the subscript s is taken as 1.
This equation is similar to those we are already familiar with, The right

hand side has for the first term a matrix whose elements are the cubes of
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the elements of the corresponding approximation to the factor loading matrix.,
We subtract from this the factor loading metrix itself, after scaling it by
8 diagonal matrix. 'I‘l;lis diagonal matrix is made up of the diagonals of the
minor product moment of the current approximation to the factor loading
matrix, and then divided by n, the number of variablz;s.

Next we calculate the product indicated in By. (19.4.2). This is the
correlation matrix postmultiplied by the matrix calculated in Eq. (19.4.1).

We then caleculate the minor product of the matrices calculated in Egs.
(19.4,1) and (19.4.2). This is the matrix G indicated in Eq. (19.4.3).

Next we calculate the basic structure factors of the matrix G. This is
indicated by Eq. (19.4.%).

Finally, for each approximation, we calculate the product of the four
factors as indicated in E‘q. (19.4.,5). This is the product of the matrix of
Eq. (19.4,2) postmultiplied first by the right orthonormal of the matrix in
Eq. (19.4.4), then by the inverse of the square root of the basic diagonal
of the matrix in Eq. (19.4.4), and finally by the left orthonormal of the
matrix in Eq. (19.4.4), which is, of course, the transpose of the right
orthonormal, This is true because G is a product mament matrix. We now
have the s+l approximation to the metrix of varimex factor loadings. These
iterations continue until the approximation is sufficiently close.

A good criterion of convergence is the trace of the G matrix given by
Eq. (19.4.3). Another criterion may be the trace of the minor product moment
of the current approximation to the factor losding matrix. This would be the
diagonal matrix in the right term of the right side of Eq. (19.4.1). This

trace is simply the total amount of variance accounted for by any particular
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8 approximation to the factor loading matrix., As indicated earlier in this
chapter, any approximation is a rank reduction solution, and therefore the
larger this trace the greater the amount of variance accounted for.

19.4.4 Numerical Example., This example begins with the same correla-
tion matrix given in Table 19.3.1.

Table 19.4.1 gives the first three varimax factor vectors for the simul-
taneous factor method applied to the correlation matrix for the convention-
al case of the squared elements.

Table 19.4.2 gives the first three varimax factor vectors for the simul-
taneous factor general method epplied to the correlation matrix for the case
of the lg-power of the varimax factor elements, The results are not markedly

3
different from those in Table 19.k4.1.
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Table 19,4.1 - Simultaneous Factor Varimax Matrix from Correlation
Matrix for k = 2

0,929
0.922
0.882
0.085
0.033
0.090
0.177
0.186
0,266

Table 19.4.2

0.94h
0.935
0.857
0.080
0.037
0.100
0.189
0,242
0.306

0.007

0.025

0.179
0,761
0.917

0.112
0.0k0
0.238

0.153

0.187

0.125

0.048
0.072
0.88%
0.891
0.551

- Simultaneous Factor General Varimax Matrix from Correla-

tion Matrix for k = %%
0.018 0.2l
0.024 0.148
0.194% 0.112
0.9890 0.116
0.670 0.049
0.645 0,092
0.123  0.97h4
0.088 0.633
0,292 0O.4k2
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19.5 Successive Factor Vector from Data Matrix

19.5.1 Characteristics of the Method., This method differs essential-
1y from the preceding methods in that the calculation of the correlation
matrix is not required. The computations proceed directly upon the data
matrix. It is assumed that they have been previously scaled. This assump-
tion is not imperative, howe#er, since the computations could be modified
to operate on a raw data matrix. The method differs also from the succes-
sive factor matrix method of Section 19.3 in that it is difficult to select
a first approximation to a factor loading vector by objective means. Per-
haps the simplest way to get the first approximation to the first factor
loading vector is to assume that the first variable is not an extremely
poor representation of the first varimax factor.

19.5.2 Computational Equations

19.5.2a Definition of Notation

Z is the ith residual data matrix where lZ is the scaled data

matrix with O means and unit variances,

[y

(3)
371’ sb.i’ sb.i , and sai are the same as in Section 19.3.2a.

gl ; 1s the s approximation to the ith varimax factor score vector.

19.5.2b The Equations

12 = 2% ¥ (1) Pi(ia) (29.5.2)

by = 20 42 (19.5.2)
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g1 = sb:i sb.i (29.5.3)
B, = 3. £t (19.5.4)
8 .4 8 .1 8. n e
sU.i = iZ sB.i (19.5.5)
s =\,./§v.i sU.”i (29.5.6)

U

8 .1
s T a4 (19.5.7)

si
L 1Z’sY,i (19.5.8)
U.l = b.l (190509)
UL21 = smallest U , (19.5.10)
Uy = Uga*bi, (19.5.11)
uLii = smallest U, (19.5.12)

19.5.3 Computationsl Instructions, We assume that a normalized data
matrix is available, Ordinarily, one would not normalize a complete data
matrix with a large number of variables if the computations are done with a
desk computer. It is assumed, however, that for this particular model a
high speed computer is availeble. It is also assumed that a preliminary
computer program is available for transforming the raw data matrix to one

vhose means are O and whose variances are unity.
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We begin by considering Eq. (19.5.1). If i = 1, this is the standard-
ized data matrix and we bypass this equation to get a first espproximation to
the first factor leading vector.

This is indicated in Eq. (19.5.2). On the basis of some rationale or
hypothesis, we may select some particular variable as a satisfactory approxi-
mation to one of the factors. If no satisfactory rationale is available, we
may arbitrarily begin with the first variable. It is seen, therefore, that
the vector given by Eq. (19.5.2) is the correlation of the selected variable
L wvith all of the variables, including itself.

Egs. (19.5.3) through (19.5.8) give the successive cycles required for
a particular approximation to the factor loading vector b. i We shall éis-
cuss this set of computations before indicating generall;-:ow we get the
first approximation for any particular factor vector following the first.

Eq. (19.5.3) shows the minor product moment of the current approxima-
tion to the ith factor vector. This scalar, 7, indicates the amount of
variance accounted for by the s approximation to the ith factor vector.

The B vector is given in Eq. (19.5.4). This is obtained by construct-
ing first a vector of the cubes of the elements in the current approximation
to the ith factor vector, and subtracting from it the current approximation
multiplied by the scalar of Eq. (19.5.3) divided by n.

Next we compute the product indiceted in Eq. (19.5.5), which is the
ith residual date matrix postmultiplied by the vector of Eq. (19.5.4).

Then we calculate the scalar indicated by Ea. (19.5.6) which is the
square root of the minor product moment of the vector calculated in Eq.

(19.5.5).
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We next calculate the current approximation to the factor score vector
Y , as indicated in Eq. (19.5.7). This is the vector calculated in Eq,
6.-9-.5.5) divided by the scalar calculated in Eq. (19.5.6).

Finally, we calculate the s+l approximation to the b. { vector by means
of Eq. (19.5.8). This is the transpose of the ith residu: data matrix post-
multiplied by the factor score vector of Eq. (19.5.7).

We then begin again with Eq. (19.5.3) and repeat the cycle. We contin-
ue this set of iterations until either the y scalar of Eq. (19.5.3) or the
@ scalar of Eq. (19.5.6) is stabilized to some specified degree.

Then we return to Eg. (19.5.1) to calculate a new residual matrix, which
is obtained by subtracting the major product of the stabilized Y and b vectors
of Egs. (19.5.7) and (19.5.8), respectively, from the current residual matrix.

To get the first approximation to the second varimax factor vector, we

consider Bq. (19.5.9). Here we simply equate the U 1 vector to the first

stablilized factor loading vector b. .

We then find the algebraically—smallest element in the vector of Eq.
(19.5.9), as indicated in Eq. (19.5.10).

Next we get the first approximation to the second factor vector by
letting i = 2 in Eq. (19.5.2).

To get the first approximation to the ith factor loading vector we con-

el to the stabilized b 1.1 vari-

sider Eq. (19.5.11). To get U g0 Ve 8dd U,
max vector,
Eq., (19.5.12) indicates the algebraically smallest element in a vector

of Ea. (19.5.11). This we designate as in the L, position.
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Then we return to Eq. (19.5.2) to get the first approximation to the
ith varimex factor loading vector. This is the transpose of the ith resi-
dual data metrix postmultiplied by the I‘i column of this residual matrix.

19.5.4 Numerical Example. This n;erical example begine with the
data matrix given in Table 19.3.2.

‘Teble 19.5.1 shows the first three varimex factor vectors obtained by
the successive factor method directly from the data matrix fer the case of
k =2,

Table 19..5.2 gives the varimax factor matrix obtained by the succes-

sive factor general method from the data matrix for the case of k= %q .
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o Table 19.5.1 - Successive Factor Varimax Matrix frem Data Matrix for
k=2

0.93% 0.091 -0,010
0.934 0.127 0.016
0.891 0.076 .0.169
0.093 0.165 0.726
0.04% 0,077 0.932
0.096 0.093 0.839
0.23 0.88L 0.081
0.240 0.871 0.012
0.300 0.541 0.212

Table 19,5.2 - Successive Factor General Varimax Matrix from Date matrix
10

for l_;_ = 3

0.943 -0.226 -0.052

009“7 0.320 "00006

00 "0-156 00136

0.l.36 '0.050 00606

0.079 -0.019 0.991

. 001316 "0'016 00700
0.30k 0.072 0.124
0.30T 0.107 0.069
0.363 0.048 0.225
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19.6 Simultaneous Factor Matrix from Date Matrix

19.6.1 Characteristics of the Method. The characteristics of this
method have already been fairly well covered in the previous sections. Ex-
cept for decimal accurecy, it should give essentially the same results as
the method discussed in Section 19.4k. The calculation of the correlation
matrix as such is bypassed, and the multiplications implied by the correla-
tion matrix, that is, the minor product moment of the deta metrix, is ac-
complished at each iteration by two successive multiplications of & matrix
by a vector,

The method avoids the accumulation of decimal error resulting from the
calculation of residual matrices, such as in Sections 19.3 and 19.5. de-
ever, as in Section 19.4, for each approximation one must calculate the
basic orthonormal and basic diagonal of a Gramian matrix whose order is
equal to the number of factors. Agein, this is not a formidable task for
high speed computers, since a number of computer programs are already avail-
able for computing all of the latent roots and vectors of the Gramian matrix,
including the programs in the- appendix for Chapter 9.

19.6.2 Computational Equations

19.6.2a Definition of Notations
Z is the date matrix with means of O and variances of unity.

Jbs sbm, .8 and o7 are the same as in Section 19.5.2b.

BY is the s approximation to the varimax factor score matrix.
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19.6.2b The Equations
P o= 2 z(m) (19.6.1)
D
‘ b b
P o= sb(” - b 3 ,ﬁg (19.6.2)
J =z (19.6.3)
Q& = BU’ U (19.6.4)
QAQ'Q' = @ (19.6.5)
s '8 8 s : o
-4 4
R = Q.0 Q (19.6.6)
1
J = U se"f (29.6.7)
s+lb = Z-’ SY (l9n6c8)

19.6.3 Computational Instructions. In this model we begin with a
standardized data matrix.

We must choose seme sort of approximation to the first varimax factor
loading matrix. If we have some hypothesis as to a single variable which
best measures each of the factors, we can use these variables to begin the
computations. In any case, whether we have a rational procedure, or whether
we select the first m variables where m is the number of facters we expect
to solve for, we begin with Eq. (19,6.1). The right side of this equation
is the transpose of the data matrix postmultiplied by a submatrix made up

of m vectors out of Z, These m vectors may be rationally or arbitrarily



127

selected. Actually, then, this first approximation to the b matrix is simply
a matrix of the correlations of the m variables with all the variables, in-
cluding the correlations among themselves.

The general equations for the computations are then indicated by Egs.
(19.6.2) through (19.6.7).

Eq. (19.6.2) gives the computation for the First approximation to the
g matrix, just as in Section 19.4,2. The first term on the right of this
equation is a matrix whose elements are the cubes of the correspending ele~
ments of the current approximation to the b or varimax factor loading matrix.
Frem this is subtracted the current approximation to the b matrix, scaled
by a diagonal matrix on the right. This diagonal metrix is made up of the
diagonal elements of the minor product moment of the current approximation
to the b matrix, divided by n, the number of variables.

The next step is given by Eg. (19.6.3). As indicated on the right hand
side mf this equation, the data matrix Z is postmultiplied by the B matrix
given in Eq. (19.6.2).

The next step is given in Eq. (19.6.4)., The matrix G is the minor pro-
duct moment of the matrix calculated in Bq. (19.6.3).

We then calculate the basic structure factors of the matrix G given in
Eq. (19.6.4), as indicated by the left hand side of Eq. (19.6.5). The com-
puter programs given for Chapter 9 for finding basic structure factors, or
eigenvalues and eigenvectors, of symmetric matrices are applicable here.

Next we calculate the G % patrix of Eq. (19.6.6). This is the triple

product involving the factors obtained from Eqe (19.6.5).
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We then calculate the current approximation to the varimax factor
score matrix, as indicated in Eq. (19.6.7). This is the matrix of Eq.
(19.6.3) postmultiplied by the matrix of Eq. (19.6.6).

Finally, we calculate the next approximation to the b or varimex factor
loading matrix, as indicated in Ey, (19.6.8). This is simply the transpose
of the data matrix Z postmultiplied by the factor score matrix given in Eq.
(19.6.7).

These computations continue until either the trace of the minor product
nmoment of the current factor loading approximation matrix, or the trace of
the G matrix in Eq. (19.6.4), reaches some specified degree of stabiliza-
tion.

19.6.4 Numerical Example, This numerical example begins with the data
matrix given in Table 19.3.2.

Table 19.6.1 gives the first three varimax factor vectors obtained by
the simultaneous factor matrix method directly from the data matrix for the
case of k = 2,

Table 19.6.2 shows the varimax factor matrix obtained by the simul-
taneous factor general matrix method directly from the data matrix for the

case ofl§_=-l—§-.

o rhss bt o A R AT L el RS A e
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Table 19.6.1 - Simulteneous Factor Varimax Matrix from Data Matrix
for k = 2

0.932 0.000 0.161
0.9%32 0.026 0.192
0.89% 0,180 0.121
0.00 0.961 0,031
0.089 0.874 0.06k4
0.181 0.091 0.901
0.185 0.021 0.899
0.269 0.227 0,562

Table 19.6.2 - Simultaneous Factor General Varimax Matrix from Data

Matrix for k = -13—0
0.945 0.018 0,136
0.948 0.034 0,1k7
0.87h 0.224 0,066
0.083 1.03 0.087
0.0L6 0.694 0,012
0.102 0.630 0.093
0.194 0.118 0,972
0.24 0.081 0.641
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19.7 Successive Factor Genersl Varimax

As we recall, the general varimax method is similar to the Kaiser vari-
max method, except that it is based on some even fractional power, greater
then unity, of the elements whose variance is maximized, rather than on the
squares of these elements,

19.7.1 Computational Equations

19.7.1a Definition of Notation

my is an integer not less than 1,

m, is an integer not greater than my .

sb  1s the s approximation to the ith varimex factor vector.

(2%-1) (k-1) (k) .
0.1 s g%y | s gb,i 8re vectors whose elements are, re

spectively, the 2k-l, k-1, and k powers of those in sb. 1

19.7.1b The Equations

2 ml
k = E-EQ—T-J: . (19.7.1)
1 b(k)
(2x-1) (x-1) gy
P.1 L "1 Tm (29.7.2)

‘ 19.7.2 Computational Instructions. The procedures here are precisely
the same as in Sections 19,3 and 19.5, respectively, except that the g vectors
are calculated in a different manner, since the function whose variance we

want to maximize is more general than that of the square of the factor load-

ing.
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'We begin with Eq. (19.7.1). Here we have, instead of the second power,
the kth power of the elements of the factor loading vectors whose variance
we wish to maximize. This is expressed as the ratio of twice the sum of a
positive integer, divided by twice some other positive integer less 1, The
positive integer in the denominator of this equation cannot be greater than
that in the numerator.

To define the s approximation to the B vector corresponding t~ the ith
varimax factor loading vector, we use Eq., (19.7.2). This is the same as Eq,
(18.5.1) of Chapter 18, As indicated in that chapter, either we will re=-
quire tables of logs and exponentials to calculate the powers of the elements
of b indicated on the right hand side of Eq. (19.7.2) , or library functions
for the computer program must be available.

19.8 Simultaneous General Varimex

The simultaneous general varimax prc;cedure is similar to procedures de-
scribed in Sections 19.4 and 19.6, except for the power of the elements in
the simple structure matrices whose variances are to be maximized.

19.8,1 Computational Equations

19.8.1a Definition of Notation

ml and m2 are the same as in Section 19.7.2a.

s'b is the s approximation to the varimax factor matrix.

sb(Ek'l) , Bb(k) R sb(k'l) ere matrices vhose elements are, respec-

tively, the 2k-1, k, and k-1 powers of the corresponding ele-

ments in sb'
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Dys p{k) 18 & diagonal matrix whose elements are those of 1’ Sb(k).
8

19.8.1b The Equations

2n
k = -2-—-52——_—-1-— (19.801)
D ! ,k)
1’ by
k-1 k-1
Sﬁ = sb( ) - Sb<< ) —""‘:—_— (190802)

19.8.2 Computational Instructions. The computational instpructions are
the ‘same as for the method using the correlatien matrix, given in Section
19.k4, and the method using the data matrix, given in Section 19.6 , except
for the calculation of the B matrices.

We shall first consider the general case for both the correlation and
the data matrices. Again, as in Section 19.7, we begin with Eq. (19.8.1)
which gives the value of k as the power of the elements of the simple strucs
ture factor loading vector whose variance we wish to maximize., The restric-
tions on my and m2 on the right hand side of this equation are the same as
the previ;:s ones,

The general equation for the P matrix is now given by Eq. (19.8.2),
where the exponents in parentheses for the b matrices indicate that the cor-
responding elements of the current approximation to the b matrix have been
raised to the indicated power. The diagonal matrix on the right of the right
hand term of the right side of Eqg, (19.8.2) is obtained as follows., We sum
the columns of the matrix whose elements are the kth power of the elements
in the b matrix, and use the elements of this vector in the diagonal. This

diagonal is then divided by n, and the b matrix with elements raised to the



- k - 1 power is scaled accordingly.
19.9 Mathematical Proofs
19.9.1 .Successive Factor Matrix from Correlation Matrix.
From Section 18.3 we have, as the iterative solution for the varimax

factor vector b

i’ ]
! b(z)
. p(3) 1t |
P = P L TR (19.9.1).
SU-i = 1al sB.i (19.9.2)
. T
& = /% sl (19.9.3)
U
£ .4 :
H;, = & (19.9.4)
. s .1 Jzi
. s+1°.1 1% g1 (19.9.5)
where
12 % 1a® "% () Tl (19.9.6)
From Eq. (19.9.2)
1238 By = 2V (19.9.7)
Frem Egs. (19.9.5) and (19.9.6)
12 4% = (1) (1)® " Pu(1-1) Pl(1e1) (29.9.8)
From Egs. (19.9.4), (19.9.5), and (19.9.7)
e 1% Py = PN (19.9.9)
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From Eq., (19.9.3)
& “\/sﬁ.i 1% 1® sﬁ.i (29.9.20)
We now let
= ! . . |
1R 18 18 (19.9.11)
where la. is the factor loading matrix.
From Egs. (19.9.8) and (19.9.11)
= - ' 19.9.12)
R R-by LI (19.9.12)
or, in general,
= - ! eJed,
R = 4R=D . (19.9.13)
From Egs..(19.9.8) and (19.9.13)
® ! = e Fe k4
1422 1% = 1l - (19.9.24)
From Egs. (19.9.9), (19.9.10), and.(19.9.14)
R 8
1 8 .1
S"'lb.i —T—-—-—-'Zéff = 'tt*' B’ (19 9 5)
/s d 1 i
From Eqs. (19.9.1), (19.9.13), and (19.9.15) we can solve iteratively
for b 1 From Eq. (19.9.15) we see that, for any iteration s, sb { is a
rank reduction solution for Eq. (19,9.13), irrespective of how well the
solution has stabilized,
We let
- = ! (19,9.16)
&1 = &% i (19.9.16)
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Then from Egs. (19.9.1) and (19.9.16)

, y
sB.:I. = sbfz) - sb.i 5?{1; (19.9.17)

Let
My = RPy (19.9.18)

From Egs. (19.9.10), (19.9.1%), and (19.9.18)

A (19.9.19)
From Bgs. (19.9.15), (19.9.18), and (19.9.19)
b . Bl (29.9.20)
s+l 4 G «Je

The computational equations then for the b , are given by Eqs. (19.9.16)

1
4R's are calculated from Eq. (19.9.13).

The variance reduction in the 1R matrix accounted for by the s approximation

through (19.9.20), and the successive
to b, is obviously given by 74 in Eq. (19.9.16)..

19,9.2 Simultaneous Factor Matrix from Correlation Matrix

From Section 18,4.2 we have, as the s approximation to the simultaneous

varimax factor matrix,

(3) Dsb'sb ,
B$ o= P - P = (19.9.21)
al £ o= L (19.9.22)
L0 o= a8 (19.9.23)
H = .0 SA* Q' (19.9.24)
b = a H (19.9.25)
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From Bas. (19.9.22) and (19.9.23)

B aal £ = 8 SA2 o2 ' (19.9.26)
From Bqs. (19.9.22), (19.9.24), and (19.9.25)

wa® = e el RS (19.9.27)
We let

sa’ = R - (19.9.28)
From BEgs. (19.9.26) and (19.9.28) °

VAN $£ R B (19.9,29)
From Egs. (19.9.27) and (19.9,28)

e1? = R B Q.48 0 (19.9.30)
Let

M =R B (19.9.31)

< = SB‘ oM (19.9.32)
From Eqs. (19.9.29) and (19.9.32)

IS (19.9.53)
From Bgs. (19.9.30) and (19.9.31)

sr1® = M 0 sA.‘1 o (19.9.34)

Then Egs. (19.9.21) end (19.9.51) through (19.9.34) constitute the computation-

al equations for calculating the 8 epproximation to the b matrix. That any
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epproximation b of width m is a solution for

- - /
& = R- b b (19.9.35)
such that the rank of mR‘is m less than the rank of R, can be readily showm
as follows, Dropping the prescripts, we have from Egs. (19.9.29) and (19.9.30),

__'1._
b = RB(B' RB)™2 (19.9.36)

Substituting Eq. (19.9.36) in Eq. (19.9.35)

& = R-RB(B'R 8)* g’ R (19.9.37)

which is, of course, the rank reduction form.

The iterations may proceed until tr sG converges to the desired degree

of decimal accuracy.
19.9.3 Successive Factor Varimax from Deta Matrix

Given the data matrix Z such that
R = 2/ 2 (19.9.38)

The successive factor varimax from the correlation matrix, according to

Section 19.3.2, is given by the set of equations

1 = P10 (19.9.39)
(3) 8’1 10.0.1
SB.i = Sb.i L4 sb.i —n— (19090 0)

W (19.9.41)

s, = 1R &Py
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% =/s".i Pl (19.9.42)

S .1 '
s+ ° & (19:9.43)

and

g = gR-P bfi (19.9.44)

From Egs. (19.9.38), (19.9.41), (19.9.42) and (19.9.43)

1 ¢
z %.5601-

(19.9.45)

b = . L
S+l oi ——
\/SB:i ZI Z sBoi
Let
v z P (19.9.46)

* 5 Ii S o‘i

U
Y 85 .1

. | sl T (19.9.47)
. sUfi sU.i

From Egs. (19.9.45), (19.9.46), and (19.9.L47)

s = 2 ¥4 (19.9.48)

Conslder now the residual matrix

L = (Z-Y, b (19.9.49)
From Egs. (19.9.48) and (19.9.49)
L o= Z2-Y, Y, 2 (29.9.50)
or
. L= (T-¥ ¥,z (19.9.51)
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From Egse (19.9.47) and (19.9.51)

L= g2t (T -y )z (19.9.52)
From Egs. (19.9.38), (19.9.44), (19.9.48), and (19.9.52)

2 % = R-b, bl (19.9.53)
or fram Eqs. (19.9.38) and (19.9.53)

2 2 = R (19.9.54)

412 = 2 - b/, (19.9.55)

then

2’ ., Z = _.R (19.9.56)

Eqs. (19.9.39), (19.9.40), (19.9.46), (19.9.47), (19.9.48), and (19.9.55)
may therefore be used to calculate the successive varimax factor vectors
directly froem the standard score metrix. Since Eq. (19.9.44) is a rank re-

duction form, Eq. (19.9.56) shows that Eq. (19.9.55) is also a rank reduc-

tion form for any approximation g to Y i and b T
Consider then
Y L (Y.l oo Y.m) (19'9'57)
b = (b XX b ) (19'9058)

el ol
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Then in

L = 2-Yv , (19.9.59)

the rank of mZ is m less than the rank of Z. Also, it should now be obvious
that Y is th:factor score matrix corresponding to the factor loading matrix
b.

19.9.4 sSimultaneous Varimax from the Data Matrix

Consider again the data matrix Z, such that
R = 22 : (19.9.60)

The simultaneous varimax matrix from the correlation matrix, according to

Section 19,4, is given by the set of equations

B = 'sb(j) - b Dsb;sb (19.9.61)

M= RSB (19.9.62)

L = B M (19.9.63)

at® = M se‘% (19.9.64)
From Egs. (19.9.60) and (19.9.62)

M=z'2z 8 (19.9.65)

From Bgs. (19.9.60), (19.9.62), and (19.9.63)

¢ = pzzp (19.9.66)

8
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From Eqs. (19.9.62) through (19.9.66)

1
_ 5 AR -3 ‘ -
sa? = 2'2 p(p2 2z .B) - (19.9.67)
Let
Z SB = SU (19.9.68)
Let
J o= P (19.9.69)

From Egs. (19.9.66) and (19.9.68)

G = U U (19.9.70) -

From (19.9.60) and (19.9.70)

2
O = 00 (19.9.71) -
Let
. )
BY = sU sG (19.9.72‘

From Eas. (19.9.71) and (19.9.72)

-l ‘
J = U8 (19.9.73)

From Egs. (19.6.67) through (19.9.73)

S+lb = gl BY (19090'“#)

We can then solve for successive approximations to b and Y by Egs. (19.9.61),
(19.9.68), (19.9.70), (22.9.71), and (19.9.73).

s e i & e W s Sy et st &



From Egs. (19.9.69) and (19.9.73)

Y
s
hence
Yl
s
Let
Z
m

From Egs. (19.9.74) and (19.9.77)

Z
m

v or

mZ
.

From Egs. (19.9.60), (19.9.74), (19.9.76), and (19.9.79)

Z’
m

hence

R
m

[}

Z
m

!

SP SQ

= I
Z -y

Z-YY 2

(I-YY) 2

= R~ b b/
8 8

- !
R Sb sb

1

(19.9.75).

(19.9.76)

(19.9.77)

(19.9.78)

(19.9.79)

(19.9.80)

(19.9.81)

In Section 19.9.2 we proved the rank of mR is o less than the rank of R.

Hence the rank of mz in Eq. (19.9.77) isg less than the rank of Z for any

approximation 8.

12.9.5 BSuccessive General Varimax Vectors

s A A4 T 4 0 L e

The direct solutions for the successive factor general varimax differ

from the solutions which maximize the variance of squared factor loadings
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k2

only in the calculation of the SB i vectors.

Let
2 ml
ko= i (19.9.82)
2
where
m >m, - (19.9.83)
and my and m, are both integers greater than O,
7 Then ()
17 bk
sﬁ.i = sbfie.k-l) - sbslif.l) sAn.i (19.9.84)
From Eq. (19.9.82)
2(2m, -m)+1
2k -1 = — L _f (19.9.85)
i)
2 (m, ~m.)+1
k«1l = éﬁ 2 1 (1909086)
m, -

If we wish to calculate the successive general varimax vectors directly
from the correlation matrix, we use the same equations as in Section 19.3.2,
with the exception of the BB. 4 vector indicated in Eq, (19.9.84),

If we wish to calcula:e—:he successive general varimax vectors directly
from the data matrix, we use the same equations as in 19.5.2, with the excep-

tion of the B , vector which is now given by Eq. (19.9.84).

19.9.6 Simultaneous General Varimex Factor Matrix
The rationale for the simultaneous general varimax directly from the

correlation or data matrices is the same as for the special case of the
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squared factor loadings, except that the sﬁ matrix is different for values

of k other than 2. The general expression for sﬁ is given by

5 = sb(91:-1,) ) sb(k-l) D

l,sb(k) (19.9.87)

where Dl' b is a diagonal of the vector of column sums of the Sb(k) matrix,
S -

————
avin—
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20
FACTOR SCORE MATRICES

20.1 Introduction

Over the past 40O years a vast amount of attention has been given to
the factor analysis of correlation matrices, In this book we have already
devoted a large number of chaepters to various methods for getting facter
loading matrices from correlation matrices, We saw in Chapter 4 how we may
view the general factor analysis problem as one of approximating a date
matrix by another of lower rank. We saw that the problem viewed in this
way is one of finding two basic matrices whose major product is in some
sense a satisfactory approximation to the data matrix. The factors of
this major product have a common order much less than the smaller order of
the data matrix, and therefore the rank of the product is equal to the
common order of its factors.

Again in Chapter 4 we saw how we may regard the postfactor of this
product as the transpose of the factor loading matrix. We alse saw how
we may regard the prefactor as the facter score matrix. Therefore, the
factor score matrix postmultiplied by the transpose of the factor leading
matrix yields the lower rank approximation to the data matrix., In this
formulation of the problem, the communality problem does not appear. There
Seems to be no clear Jjustification for considering the communality concept
vhen we view factor analysis, not as a method of factoring the correlation
or covariance matrix, but rather as one of factoring the data matrix.
Guttman (1955) has discussed an interesting exception, which is, however,
beyond the scope of this book.

In any case, with all of the attention given to the solutions for
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factor loading matrices, very little has been devoted to the derivation of
factor score matrices, This is especially curious inasmuch as the scienti-
fic, logicel, and philesophical status of the factor score matrix would ap-
pear to be at least as respectable as that of the factor leading matrix.
Seme would argue, of course, that the factor loading matrix 18 of more funda-
mental importance because it enables us to identify or define the fundament-
al variables of a particular discipline. Certainly there is scmething to
be said for this point of view, if one regards the major objective of the
simple structure or transformation technique as one of finding factor load-
ings which are relatively invariant from one sample of entities and attri-
butes to another.

From e philosophical point of view, these considerations may Justify
greater interest in the factor loading metrix. However, fromAa purely form-
al point of view, considering only the mathematics involved, there is no
reason to be more interested in the factor loading matrix than in the factor
score matrix., Considering the model in which the major product mf these
two matrices approximates the data matrix, there is actually nothing in the
mathematics of the model which would in some sense give higher status to
the postfactor than to the prefactor,

This statement is even more cogent if we recall Chapters 13 and 15
dealing with linear transformations involving ooth scale and origin, which
may be applied to both the right and the left hand sides of the data matrix.
We have seen that these operations can materially affect the results of a
factor analysis, and that the traditional practice of metricizing the data

matrix by attributes rather than by entities, is more or less arbitrary. In
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any case, the problem of finding the left hand factor of the matrix product
vhich purports to approximate the data matrix appears to merit considerably
more attention than it has received in the past.

But even the attention which the problem has received seems to have
caused as much confusion as clarification for the central issues involved.
These are actually rather simple, if one does not become unduly involved
with the red herrings of the communélity and specificity problems. One
need only examine the bewildering, even if at times ingenious, traditional
discussions of the factor measurement problem to realize that they have
often strayed fer from the solid ground of the date matrix.

Scme investigators have argued that factor scores give no more infor-
mation than do the measures from which they are derived, and that there-
fore, at best thesé scores are of more theoretical than practical interest,
Unfortunately, these investigators have asked the wrong question, Instead
of asking whether the factor scores give more informetion than the original
data scores, they should have asked whether the original data scores give
more information than the factor scores. If one asks this latter question,
he may conclude that the data matrix mey yield not only relevanm‘or system-
atic informetion, but also random or unreliable information.

One may then regard the lower rank data matrix approximation model as
a procedure for eliminating frdm the data matrix random or irrelevant vari-
ance, Hprst (1941) has utilized the factor score matrix to reduce ﬁ@e ef-
fect of this variance. The method has never received wide attention. ILeiman
(1951) has spplied this conception of factor analysis objectives to experi-

mental data, He has found that, by the use of lower rank approximation



7

matrices to data matrices, one may obtain multiple regression parameters
which hold up better on cross-validation than when the data matrices are
employed directly in the traditional methods. A much more extensive applica-
tion of factor score matrices and the lower rank approximation model has
been made by Burket (1964). 1In his work it is clear that for prediction
purposes the lower rank approxiﬁation procedures have a definite advantage
over the conventional multiple regression procedures, This application of
the factor score concept will be considered in more detail in Chépter 23.
Here we will present various types of methods for calculating factor score
matrices,

20.2 Kinds of Factor Score Solutions

We may classify the various kinds of solutions for factor score matrices
to correspond with the procedures for getting factor loading matrices which
we have discussed in the previous chapters. The solutions will be presented
under the headings of the centroid factor score matrix, the multiple group
factor score matrix, the principal axis factor score matrix, the least square
factor score matrix, and the image analysis factor score matrix.

20.2.1 The Centroid Factor Score Matrix. 'The calculation of a centroid
factor score matrix directly from the data matrix has already been explicit-
ly considered in Chapter 12, In this process, we arrive successively at
factor loading vectors and factor score vectors. However, in this chapter
we shall present the calculation of a factor score matrix based on a pre~
vious calculation of the centroid factor loading metrix, This factor load~
ing matrix, together with a matrix of sign vectors, yields a transformation

matrix which, when applied to the data matrix, gives the centroid factor
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score matrix,

20.2,2 The Multiple Group Factor Score Metrix. We shall see that
by the use of a binary grouping matrix we can also calculate a multiple
group factor score matrix directly from the data matrix. As a matter of
fact, it is easier to use the multiple group method directly on the data
matrix than it is to use the centroid method, because in the centroid
method we must have a matrix of sign vectors, and this ordinarily becomes
available only with a successive factor solution. In the centroid method,
it will be recalled that residual matrices are calculated, and with each
residual matrix one iterates to the optimal sign vector.

On the other hand, in the case of the multiple group method, one pre-
sumably hes an a priori binary grouping matrix. For this reason one need
not go through the actual calculation of the multiple group factor loading
metrix before calculating the multiple group factor score matrix.

20.2.3 The Principal Axis Factor Score Matrix. Perhaps the simplest
and most elegant of all of the methods for getting factor score matrices is
the basic structure method. As we have seen in Chapter L4, the principal
axis or basic structure type sol&tion yields the least square approximation
to the data matrix for any specified rank of the approximation matrix. We
have seen that the principal axis or basic structure factor loading matrix
is both a rank reduction solution and ; least square approximation to the
correlation or covariance matrix. It is easy to show that the first m
vectors of the left basic orthonormal matrix of the data matrix yleld pre-
cisely the principal axis factor score matrix, and that this is an ortho-

gonal matrix,

R R
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20.2.4 The Least Square Factor Score Matrix. Having given some arbit-
rary factor loading matrix, whether centroid, multiple group, or principal
axis, we may wish to detérmine that factor score matrix which, when post-
multiplied by the transpose of the factor loading matrix, yields a product
which is the least square approximation to the data matrix. This means that
the sums of squares of elements of the residual matrix will be a minimum,
This will in general be true, as we have seen, for the principal axis method.
We can also find factor score matrices for the centroid and the multiple
group methods which are leas% square solutions to the data watrix. As a
matter of fact, for any arbitrary basic matrix of width equal to the number
of attributes and of height equal to the number of factors, we can find what
particular vertical matrix, postmultiplied by the transpose of the arbitrary
factor matrix, yields a product which is the best approximation to the data
matrix in the least square sense. .

20.2.5 The Image Analysis Factor Score Matrix. To our knowledge, no
detailed analysis for the calculation of the factor score matrix from the
image type factor loading matrix has been previously presented. Harris (1962)
has given an interesting theoretical analysis éf this problem in a recent
paper. The image analysis approach implies a transformation of the data
matrix. It is therefore of interest to see what procedures are appropriate
in the calculation of factor score matrices based on these image factor load-
ing matrices and the transformed data matrix.

20.3 The Centroid Factor Score Matrix
20.3.1 Characteristics of the Method. We have indicated in the pre-

vious section that the centroid factor loading metrix may be used in the
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solution of a factor score matrix, such that the major product of the two
will give the best least square approximation to the data matrix., We shall,
however, consider here only a particular type of centroid factor scere solu-
tion., In this solution the factor score matrix is an orthogonal matrix.

It has been repeatedly said or implied that the centroid solution
yields orthogonal factors. But like much of the discussion about ortho-
gonel factors, the definition of orthogonal factors has been vague. We
shall insist on using the term orthogonal only with respect to vectors. We
shall insist that the term orthogonality is noﬁ'useful unless considered
in this connection. By saying that two vectors are orthogonal, we simply
mean that their minor product is O, |

The solution for the centroid factor score matrix which we shall con-
sider does yield factor scores such that the minor product of any pair of
factor score vectors taken from the factor score matrix will be O.

A further characteristic of this method is that the solution is a rank
reduction solution. That is, the solution is such that, when the major
product of the factor score matrix by the factor loading matrix is sub-
tracted from the data matrix, the residusl matrix is of rank equal to the
rank of the data matrix less the number of factors,

This solution, like all of the solutions for factor score matrices
vhich we shall consider, involves no iterative précedures. In this respect
it is relatively simple and straightforward computationally.

The methods outlined in all of the procedures in this chapter are con-
cerned particularly with the calculation ef transformation metrices which may

be applied to data matrices to convert them to factor score matrices.
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Therefore, in actual practice it may be desirable to use these transforma-
tion matrices on data matrices other than those from which the factor load-
ing matrices were calculated. When this is the case, the resulting factor
score matrices cannot be expected to exhibit precisely the same character-
istics as vhen these transformation matrices are applied to the original
date matrix. |

. 20.3.2 Computational Equations

20.3.2a Definition of Notation
a is the centroid factor loading matrix.
L is the matrix of sign vectors.
Y is the centroid factor score matrix.
Z is the normalized data matrix.

20.3.2b The Equations

t' = a'lL (20.3.1)
B = Lt (20.3.2)
Y = 2B (20.3.3)

20.3.3 Computational Instructions. We begin with the centroid factor
loading matrix a. We also have given the matrix of sign vectors used in the
calculation of the centroid factor loading matrix, which we designate as L.

We calculate the upper triangular matrix as indicated in Eg. (20.3.1).
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This is the transpose of the factor loading matrix postmultiplied by the
sign matrix,

Next we calculate Eq. (20.3.2), which is the matrix of sign vectors
postmultiplied by the inverse of the triangular matrix in Eq. (20.3.1).

We now calculate the centroid factor score matrix, as indicated in Eq,
(20.3.3). This is the data matrix postmultipliedlby the transformation
metrix of Eqg. (20.3.2).

20.3.4 Numerical Example., We begin with the data matrix used in
Chapter 19, whose corresponding correlation matrix is the same used in pre-
vious chapters. The data matrix is repeated for convenient reference in
Table 20.3.1.

Table 20.3.2 gives the centroid factor loading matrix for three factors,
calculated from the correlation matrix.

Table 20.3.3 gives the matrix of sign vectors by rows, used in calcu-
lating the centroid matrix, and subsequently in the calculation of the factor
score matrix.

Table 20.3.4 gives the centroid factor score matrix for three factors,
calculated by means of Egs. (20.3.1) through (20.3.4).

Table 20,3.5 gives the minor product moment of the factor score matrix.
As proved in Section 20.8.1, this should be an identity matrix, which it is

within limits of rounding error.
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Table 20.3.1 - Normalized Deviation Data Matrix

0.128
0,764
'00030
-0.280
'O . 336
'0 . 276
0.057
-0.010
-0 . 303
0.086
0.164
0.036

00181
0.T40
-0.0hé
-0.351
-0.306
=0,32h4
‘00070
-0,140
0.227
0.057

- 0,106

-O . 0711

0.k21
0,563
0,014
-0.326
"O 1] )4‘29
-0,271
-0.016
0.326
-0.0lh
“0 3 003
~0.12k
-0,142

0,506
‘00387
0.147

-=0.025

"O . 5“‘2
‘00570
0.006
-0.00&
0.029
0.161
0.254
0.24k2

0.857
~0.293
"O . 109
'0 . 109
-0,006
-0 . 225

0.152
-0.258
~0.,102

01073
-0,002

0,023

0.7h6
’00202
-00135
‘00186
‘00153
0.035
‘O . h‘l‘"l
-0.091
=0.,125
0.15k
0.227
0.192

0.280
0.261
0.6h0
00085
"0.""28
0.129
-0.166
'0.""10
-0.086
‘0-082
'0| 072
-0.148

0.178
0.281
0.682
0.0%91
0.056
<0.4k6
-0.354
-0 . 200
'Ol106
-0.067
0.025
-0.119

0.246
0,043
0.661
«0.654
-O.lQh
-0.12L
-0.033
-0.101
-0 . 07,'!
'O . 009
. 0.156
0.011

Table 20.3.2 « Centroid Factor Loading Matrix by Rows for Three Factors

0.659
0. U57
0.k56

Table 20.3.5 = Sign Matrix by Rows for Three Factors

1. 1.
1. 1.
l. ll

0.68k
0.452
0.1439

1. 1.
1. -1, el -],
lo -lo

0.730
0.283
0.451

l. l.

1.

0.617
-0,601
-0.209

l. 1
1. 1

T 0.5k2
-0 . 709
0.094

o L.
. 1

lo 'lo "l. 'l-

0.588
'0 . 663
0.116

0.637
C.271
-O . !"79

0,606
005,"'6
-0.’4*88

Table 20.3.4 - Normalized Centroid Factor Score Matrix by Columns

O * 61h
0.307
0.316
-0.30k
“00393
"0 03211'
~0.150
-0.154
~0.096
0.061
0.124
0.004

Table 20.3.5 - Minor Product Moment of Centroid Factor Score Matrix

0.997
-0,001
0.002

t

-0.525

- 0.719

0.329
-0.108
0.007
«0.003
0.011
0.043
0.015
«0,133
-0.123
-0.228

-0,001

0.999
0.000

0.175
0.462
-0.810
-0.191
0.019
'0 0015
0.105
0.211
-0,00k
0.083
-0,031
-0.011

0.002
0.000
1.001

0.708
0.164
«0.378
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20,4 The Multiple Group Factor Score Matrix
20.4,1 Characteristics of the Solution. The solution for the multiple

group factor scores, as already indicated, does not first require the calcu-

‘lation of the multiple group factor loading matrix. If we have the binary

grouping matrix, it can be applied directly to the correlation matrix to
yield a transformetion matrix which, when applied to the data matrix, gives
the factor score matrix. As in the case of the centroid method, this solu-
tionh is not a least square solution in the sense that the major product of
the factor score and factor loading matrices gives the best least square
fit to the data matrix. However, it does yleld a factor score matrix which
is orthonormal and of rank reduction form.

20.4,2 Computational Bguations

20.4.2a Definition of Notetion
R is the correlation matrix.
f is a binary grouping metrix.
t is a lower triangular matrix.
Y is the multiple group factor score matrix.
Z is the normalized data matrix.
20.4,2b The Eguations
¢ = £'R¥ (20.4.1)

tt = ¢ (20.4.2)
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<1

B = £4 (20.4.3)

Y ='2 B (20.4.4)

20.4.3 Computational Instructions. We assume that the correlation
matrix R end a binary grouping matrix f are given., We then calculate the
matrix in Bq. (20.4.1). This is the correlation matrix postmultiplied by
the binary grouping matrix and premultiplied by its transpose. .

Next we calculate the triangular factors of the matrix of Eq. (20.&.1),
as indicated in Bq. (20.4.2).

In Bq, (20.4.3) we postmultiply the binary grouping matrix by the in-
verse of the upper triangular factor in Eq. (20.4.2).

The multiple group factor score matrix is indicated in Eq. (20.4.4).
This is the data matrix postmultiplied by the transformation matrix of Eq.
(20.4.3). The minor product mcment of this matrix is shown in Section 20.8.2
to be the identity matrix.

20.4.4 Numerical Example. We use the same data matrix and correlation
matrix as in the previous section.

Table 20.4.1 gives the binary grouping matrix by rows for three factors,

Table 20.4,2 gives the normalized multiple group factor score matrix by
rows for three factors. The matrix was calculated by means of Egqs. (20.4.1)
through (20.4.%4).

Table 20.4.3 gives the minor product moment of the multiple group factor
score matrix., Within rounding error this is an identity matrix, as it should
be according to Section 20.8.2. In this sense the multiple group factors may

be said to be orthogonal, but only if the factor scores are calculated in
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this manner,
The same may also be said for the centroid factors when the factor

score matrix is calculated according to Section 20.3.
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Table 20.4.1 - Binary Grouping Matrix by Rows for Three Factors
l. l‘ l' 0. O. Ol O. O. 0‘

0. 0. O. 1. 1. 1. O. O. O.
0, O« Os O, O, O, 1. 1. 1.

Table 20,54.2 - Normalized Multiple Group Factor Score Matrix for Three

Factors
0.262 0.767 0.007
0,743 -0.470 0.022
-0.022 -0.033 0.902
‘0 . Shl} 'O . 062 "O . 037
-0 . 585 -0 . 205 O . 009
-0.313 -0.161 -0,010
"O . Olo -0 . 107 "O . 216
0,063 -~0.147 ~0.312
<0.032 -0,071 -0.086
0.050 0.133 -0,126
0.052 0.168 -0.016
-0.065 0.187 -0.128

Toble 20.%4,3 - Minor Product Moment of Multiple Group Factor Score Matrix

l.OOO 0.000 "OOOO.D
0.000 1.000 ~0,001L
-0.003 =~0.00L 1.000
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20.5 The Principal Axis Factor Score Matrix
20.5.,1 Characteristics of the Method. As indicated in the previous
discussion on kinds of methods, the principal axis solution is the simplest
of the methods, if the basic structure or principai axls factor loading
matrix is already available, One of the most important advantages of the
principal axis method is that it gives, at the same time, a least square,
a rank reduction, and an orthogonal solution for the factor score matrix.
20.5.2 Computational Equations

20.5.2a Definition of Notation
a is the principal axis factor loading matrix.
® is the basic diagonal of the correlation matrix.
Y is the principal axis factor score matrix.
Z is the normalized data matrix.
20.5.2b The Equations
B = ag’ (20.5.1)
Y = 2B (20.5.2)

20.5.3 Computational Instructions. The computational instructions
for the principal axis factor score matrix are very simple. We begin with
the factor loading matrix a end the basic diagonsl 3. BEd. (20.5.1), then,
directly gives the transformation matrix. This is simply the factor loading

matrix postmultiplied by the inverse of the § diagonal.
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The factor score matrix is then calculated in the usual manner, as in-
dicated in Eg. (20.5.2).

Hotelling (1933) published this solution for the factor score matrix.
However, it does not seem to be well known and has not been used extensively.

21.5.4 Numerical Example. In this example we use the same data and
correlation matrices as in the previous sections.

Table 20.5.1 gives the first three basic diagonals of the correlation
matrix, as found in early chapters giving basic structure solutions.

Table 20.5.2 gives the first three principle axis factor vectors by
rows, as found in previous chapters, for example, Chapters 7 and 8.

Table 20.5.3 gives the normelized principal axis factor score matrix
for three factors, as calculated from Eqs, (20.5.1) and (20.5.2).

Table 20.5.4 gives the minor product moment of the principal axis

factor score matrix. This is the identity matrix to within rounding exror.
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Table 20.5.1 - First Three Basic Diagonals of Correlation Matrix

3,749

2,050

1.331

Table.20.5.2 - Principal Axis Factor Loading Matrix by Rows for Three

0.717
0.493
0.350

Factors
0.750  0.773 0.556 0.463 0.518 0.640 0.615 0.715
0,478 0.296 -0.649 -0,744 -0,69k 0.080 0.166 -0.03k
0.322 0.’-#06 0-068 Oo 181 On 188 -O. 588 -0.621 -00369

Table 20.5.3 =~ Normalized Principal Axis Factor Score Matrix for Three

0.555
0.386
0,325
-0.328
"Oc!"'05
-0.325
-0.1%0
-0.,129
-0,088
0.052
0.11%
-0.,01k

Table 20.5.4 - Minor

0.598
"O L] 001
0.002

Factors
=0.569 0.179
0.767 0.205
0.092 -0.825
-0,065 =0,198
0.001 =0.146
-0.025 <~0.093
0.053 0,200
0.107 0,317
0.037 0.049
-0.098 0.143
-0.,107 0.052
-0.195 0.10¢

-0.001
1.000
0.000

Product Moment of Principal Axis Factor Score Matrix

0,002
0.000
1.002
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20.6 The Least Square Factor Score Matrix

20.6.1 Characteristics of the Method., This method is not mutually
exclusive of those previously considered. It may be epplied to any factor
loadiqg matrix such as the centroid, the multiple group, or the principal
axis. When applied to the principal axis factor matrix i1t yields precisely
the solution given in the preceding section. The least square solution
yields a factor score matrix such that, when the major product of this
matrix and the factor loading matrix is subtracted from the date matrix,
the sum of squares of elements in the residual matrix is a minimum. This
solution, as all least square solutions in general, can be shown to be &
rank reduction solution. The left arbitrary multiplier, however, is some-
what more involved than in other methods, as can be seen from Section 20,9.k.
In general, also, the computations are somewhat more involved than they are
for the solutions we have already discussed.

20.6.2 Computational Equations

20.6.22 Definition of Notation
a is an arbitrary factor loading matrix.
Z is the normalized data matrix.
Y is the arbitrary factor score matrix.
20.6.2b The Equations

G = a' a (20.6.1)
B = ag’ (20.6.2)

Y = 2B (20.6.3)
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20.6.3 Computational Instructions. We begin with any arbitrary factor
loading matrix.

Eé. (20,6.1) gives the minor product moment of the arbitrary factor
loading matrix.

The next step is indlcated by Eq. (20.6.2), vhich is the factor load-
ing matrix postmultiplied by the inverse of the matrix in Eq. (20.6.1), This
is the matrix which transforms the data matrix to the factor score matrix.

Eq. (20.6.3) shows the least square factor score matrix as the product
of the data matrix postmultiplied by the transformation matrix of Lq.
(20.6.2).

20.6.4 Ilumerical Example, We use the same data and correlation matri-
ces as in the previous sections., We also use the centroid factor matrix of
Section 20.3.k4,

Table 20.6.1 shows the minor product moment matrix of the centroid
factor matrix for three factors.

Table 20.6.2 gives the inverse of the matrix in Table 20,6.1.

Table 20.6.3 gives the product of the natural order of the matrix in
Table 20.6.1 postmultiplied by the matrix of Table 20.6.2. This gives the
matrix for transforming the data matrix to the least square factor scorer
matrix.

Table 20.6.4 gives the least square factor score matrix.

Table 20.6.5 gives the minor product moment of the least square factor
score matrix. This is not an identity matrix, nor should it be so, unless

the factor loading matrix consists of basic structure factors.
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Table 20.6.1 - Minor Product Moment of Centreid Factor Loading Matrix
for Third Factors

3.730  0.170 0,052
0.170 2.017 0.156
0.052 0.156 1.280

Table 20.6.2 - Inverse of Minor Product Moment of Factor Loading Matrix

O ] 269 '0 . 022 -0 . 008
-O . 022 0 . 502 'O . 060
-0,008 -0.060 0.789

Table 20.6.3 - Matrix for Transforming Data Matrix to Factor Score Matrix

0.164 0.188 0.327
0.171 0,185 0.313
0.187 0.099 0.333
0.181 -0.303 -0,13L
0.161 -0.374 0,112
0.172 -0.353 0O.127
0.169 0.151 -0.399
0.160 0.190 -0.411
0.190 0,090 -0.314

Table 20.6.4 - Least Square Factor Score Matrix

0.611 -0,540 0,100
0.302 0.731 0.429
-0.316 -0.065 -0,208
-0.400 0,007 <«0.109
-0.321 -0.031 -0.083
-0.147 -0.002 0,174
-0,092 0.018 0.037
0,061 -0.123 0.112
0.12k -0,104 0,012
0.005 -0.215 0,040

Table 20.6.5 - Minor Product Moment of Least Square Factor Score Matrix

'00002 1.0014 0.00)4-
0.00k 0,004 1,050
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20.7 The Image Analysis Factor Score Matrix

20.7.1 Characteristics of the Method. When the image anslysis approach
to factor analysis is used, we may employ any of the factoring methods dis-
cussed so far: the princiéal axis, the group centroid, the centroid, the
multiple group, or other methods. Furthermore, we may also use any of the
metricizing methods of Chaptérs 13 and 15. We shall in our description of
computational precedures indicate a scaling diagonal. In particular, this
may be an identity metrix.,

20.7.2 Computational Eguations

20.7.2a Definitien of Notation
R is the correlation matrix,
D is an attribute scaling matrix.
t is a triangular matrix.
Y is the image factor score matrix.
Z is the normelized date matrix.

20.7.2b The Equations

M = (I-R D;;-l) D (20.7.1)
- - 2 DX + bl RY DX 20,78
¢ = D(R 2 Dga + DA R DRl)D (20.7.2)

¢c = LVeG6L (20.7.3)
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te = C (20.7.4)
B = M (Lt (20.7.5)
Y = 2B (20.7.6)

20.7.3 Computational Instructions. We shall assume the correlation
matrix given. We then calculate a matrix M as indicated in BEy. (20.7.1).
This will be recognized as the matrix which transforms the data matrix to
the image of the data matrix. The matrix on the extreme right of the right
hand side of the equation is a scaling diagonal. It may be chosen accord-
ing to one of the methods suggested in Chapter'16, or it may be détermined
according to the self-scaling procedures of Chapter 15.

We then calculate the image covariance scaled matrix, as in Eq. (20.7.2).
The part in parentheses on the right hand side of this equation will be recog-
nized as the standard covariance image matrix of Guttman (1953). It is pre-
and postmultiplied by the diagonal scaling matrix of Eq. (20.7.1).

Next we calculate the C matrix in Eq. (20.7.3). This is the matrix of
Eq. (20.7.2) premultiplied by the transpose of an L matrix and postmultiplied
by the natural order of this matrix. This L matrix is of the same ordey.as the
factor loeding matrix, which presumably has been obtained from the G matrix.
In particular, it may be a binary grouping matrix, a matrix of sign vectors
for the centroid method, or a principal axis factor loading matrix calculated
from the G matrix of Eq. (20.7.2). This depends on which particular type of
factor loading matrix one has calculated.

Eq. (20.7.4) shows a triangular factoring of the matrix in Eq. (20.7.3).
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Next the L matrix is postmultiplied by the inverse of the upper tri-
angular factor of Eq. (20.7.l4t), and then the matrix of Eq. (20.7.1) is post~
multiplied by this product, to give the matrix B of Eq. (20.7.5).

The matrix of Eq. (20.7.5) is the transformation matrix vwhich, when ap-
plied to the data matrix as in Eq. (20.7.6), yields the factor score matrix.
This factor score matrix is orthonormal and of rank reduction form. It is
not a least square solution, unless L in Eq. (20.7.3) happens to be the basic
structure or principal axis factor loading matrix for the covariance matrix
G in Eq. (20.7.2).

20,7.4 Numerical Example., We use the same dats and correlation matri-
ces as in the previous sections, and the grouping matrix of Table 20.k4.1.

* The identity matrix is taken as the scaling diagonal.

Table 20.7.1 gives the image cova;iance matrix.

Table 20.7.2 gives the image factor score matrix for three factors,
as calculated by means of Eqs. (20.7.1) through (20.7.6).

Table 20.7.5 gives the minor product moment of the image factor score
matrix, This is an identity matrix to within rounding error, as it should

be.
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Table 20,7.1 - Image Covariance Matrix

0.733
0.688
0.662
0.120
0.065
0.101
0.294
C.502
0.336

Table 20.7

0.265

0.734

0.018

<0.359

"0 . 585

~0.316

~-0.025

* 0.019
-0.,03k4

0,054

. 0.079
‘0 . 053

0.688
0.7hb
0.666
0.147
0,067
0.117
0.316
0.307
0.358

0l662
0.666
0.691
0.215
0.169
0.239
0.288
0.305
0.355

0.120
0.147
0.511
0.488
0.4ok
0.218
0.178
0.285

0,065
0.067
0.169
0.488
0.572
0.486
0.161
0.081
0.246

0.101
0.117
0.239
0. 49k
0.486
0.562
0.160
0.142
0.262

0.29k%
0.316
0.288
0.218
0.161
0.160
0.481
0.396
0.418

.2 - Image Factor Score Matrix for Three Factors

0.796
-0.490
0.018
"0 . 112
-0.170
~0,106
-0 [ loh‘
-0,113
-0.078
0.102
0.111
0.1h44

'00058
0.013
0.881
0.121

-0 0019

-0.068

'Oo 2)"'8

~0.331

"00051

-0.115

'00003

-0.111

0.302
0.307
0.305
0.178
0.081
0.142
0.396
0.499
0.388

Table 20.7.3 - Minor Product Moment of Image Factor Score Matrix

1.000
0.000
'0 . OOL“

0.000
1.000
-0.001

-0,00k
-0.001
0.999

0.336
0.358
0.355
0.285
0.246
0.262
0.418
00388
0,436
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20.8 Mathematical Proofs
20.8.1 The Centroid Factor Score Matrix

Consider any basic matrix L of order n x m.

Let
RL
77,
8, = =i (20.8.1)
1
JUsRL,
where
- - ! .
iR = [R-a; 8, (20.8.2)
Let
a = (a.l XN a.m) (20.803)

We can prove, by the methods of Chapter 5, from Egs. (20.8.1) and (20.8.2)

that

e =t . (20.8.4)

where ta is lower triangular.

Consider now

I/RL = tb t£ (20.8.5)
and

 me oo 0.8,

b = RLt) (20.8.6)
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L'b = ty (20.8.7)

From Egs. (20.8.2) and (20.8.3)

mwR = R-ee (20.8.8)

From Egs. (20.8.1) through (20.8.4) it can be shown that
gL = 0 : (20.8.9)
From Egs. (20.8.8) and (20.8.9)

L' RL = L'aa L (20.8.10)
From Egs. (20.8.5), (20.8.6), and (20.8.7)

I'RL = L' bbv' L | (20.8.11)
From Egs. (20.8.%4), (20.8.7), (20.8.10), and (20.8,11)
t, = by (20.8.12)

From Egs. (20.8.4), (20.8.7), and (20.8.12)

L'a = L'b (20.8.13)
If m = n and L is nonsingular, we have from Eq. (20.8.13) that a =b. But
from Eqs. (20.8.1) and (20.8.2) the solution for any a ; is independent of

the solution for any a , . . Also, from Eq. (20.8.6) the solution for any

b 5 is independent of the solution for any b 14k Hence, in general
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Consider then the n x m matrix L of sign vectors for the centroid

-factor solution such that

sk = jR-ay aii (20.8.15)

where

* 1
JUg RL g

(20.8.16)

From Eas. (20.8.3) and (20.8.4) we can express the centroid factor matrix

as a function directly of the correlation matrix by

a = RLt"™ (20.8.17)
where

tt = L'RL (20.8.18)

We may now let L and L/ 2’ be the right and left arbitrary multipliers

in the rank reduction equation and write

z-zL @ z)zLl* (L 2') 2 (20.8,19)

=
L}

Iif

R

VAN (20.8.20)
we have from Egs. (20.8.18), (20.8.19), and (20.8.20)

E = 2-(zL+% (¢ 1 R) (20.8.21)




17k
We now consider the general lower rank approximetion form to the
date matrix
E = Z2-Ya' (20.8.22)
If a is given by Eq, (20.8.17), then from Eq. (20.8.21)
Y = 2Lt/ | (20.8.23)
and from Egs., (20.8.18), (20.8.20), and (20.8.23)
Y'Y = I (20.8.24)
If now we have an orthonormal transfonna‘.tion
b = aH (20.8.25)
we consider W such that
Wbu = Yal (20.8,26)
From Egs. (20.8.25) and (20.8.26)
W = YBH (20.8.27)

which is a simple structure factor score matrix., Since H is orthonormel by

definition, we have from Egs. (20.8.24) and (20.8.27)
WW o= I (20.8.28)

If the simple structure transformation is not orthonormal, we use h instead
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of H and show that
4
w = Yh (20.8.29)
and the covariance matrix C_ for v is

c, = (' n)? (20.8.30)

or if we let r be the correlation of the simple structure reference axes,

then

¢ = ¢ (20.8.31)

t[ = al L (20-8.32)

Y = 2 (Lt (20.8.33)
Then

W o= 2 (L (' u)) (20.8.34):
for the orthonormal tr&nsformation, and

w = 2 (L (¢ nh) (20.8.35)

20,8.2 The Multiple Group Factor Score Matrix
Suppose we let f be the binary grouping matrix for the multiple group

method of factor analysis. The factor loading matrix given in Chapter 6 1is

a = Rf£t/? (20.8.36)
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where

tt/ = £/ Rf - (20.8.37)
Then by the methods of the preceding section we have for the rank reduction

type multiple group factor score matrix

z £t (20.8.38)

<
L1}

Since

R = 2'2 (20.8.39)
we can readily see from Egs. (20.8.37), (20.8.38), and (20.8.39) that

YY = I (20.8.40)
We also show that Y can be computed directly from the data matrix. We let

U = 2f (20.8.41)

tt = UU (20.8.42)
From Egs. (20.8.37), (20.8.38), (20.8.39), (20.8.41), and (20.8.42)

Y = vt (20.8.43)

We may now use Egs. (20.8.36), (20.8.38), and (20.8.43) to calculate g from

the factor score matrix L thus
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The same procedure could have been used to calculate the centroid factor
score matrix directly from the data matrix, having given the matrix L of sign
vectors. It will be recalled that in Chapter 5 the successive residual matri-
ces vere required from which to calculate the successive sign vectors, and
hence they are not available in advance. It is of interest to note that a
in Eq. (20,8.44) is precisely a matrix of the correlations of the factor
scores with the variables, since both Z and Y are in standard measures. For

the case of orthonormal transformetions to simple structure we have

W = YH (20.8.45)
and for oblique transformations we have

w = Yn'? (20.8.46)
For the computational equations we have Egs. (20.8.41), (20.8.42), and

W

U (+'* ) (20.8.47)

and
v = U (s (20.8.48)

for the orthonormal and oblique transformations, respectively.
20.8.3 The Principal Axis Factor Score Matrix
The basic structure or principal axis factor score matrix is well known

to be

Y = zqat (20.8.49)
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/ or, if the basic structure of Z is
"2 = PAQ (20.8.50)
then
Y = P ' (20.8.51)
For the orthonormal and oblique transformation, respectively, we have
: W = PH (20.8.52)
and
w = Ph*? (20.8.53)
!
For the covariance matrices of Egs. (20.8.51), (20.8.52), and (20.8.53)
" we have

¢y = I : (20.8.54)
¢, = I (20.8.55)
c, = (n ny? = (20.8.56)

20.8.4 The Least Square Pactor Score Matrix
Given the arbitrary factor loading matrix a and the residual factor

score matrix

E Z-Yal (20.8.57)
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the solution for Y which minimizes tr E'E is well known to be

za (a a)?

L]
L}

If

RL ¢

©
]

where L is arbitrary and
R = 2'2
tt! = L'RL

then from.Egs. (20.8.58) through (20.8.61)

Gy = Y'Y = % (U R L) @ 1)t
g

R = qaf ¢
and

L = QA

then it can be shown that
t = ¢t = A?

and therefore also that

(20.8.58)

(20.8.59)

(20.8.60)

. {(20.8.61)

(20.8.62)

-(20.8.63)

(20.8.6k)

(20.8.65)

(20.8.66)
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for other _L_, matri-

There appears, however, to be no simple expression for CY

ces, such as the centroid sign metrix, or the binary groﬁping matrix f.
If we have the orthonormal or oblique transformations H or h, respect-

ively, then

W

YH (20.8.67)
and
w = Yn? (20.8.68)

For the case of Eq. (20.8.64) we have

¢, = I (20.8.69)

c, = r? (20.8.70)
Otherwise,

¢, = HCH (20.8.71)
and

c, = h;l cy b7 (20.8.72)

as can be seen from Egs. (20.8.62), (20.8.67), and (20.8.68).
20,8.5 The Image Analysis Factor Score Matrix
Let

U = 2(1-R D;-l) D (20.8.73)
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? be the image data matrix scaled with D according to one of the procedures
of Chapter 15.
We let
3 ) -
M = (I -R DR-J.) D (20.8.74)

and the scaled image covariance matrix be
¢y = U U < (20.8.75)

Let L be a matrix of the order of the factor matrix. As a special case, it
may be a centroid sign matrix, a binary grouping matrix, or the principal

axis factor matrix of C In all cases, we know by the previous methods

u*
) that the rank reductio;x—type factor score matrix is as follows.
. u = UL (20.8.76)
tt! = v (20.8.77)
Y = ut’ | (20.8.78)
We let
U=Pag (20.8.79)
and
L = QA (20.8.80)
4 that 1s, L is the principal axis factor matrix of CU. Thgn it can readily

-* v be shown from Egs. (20.8.76) through (20.8.80) that

e e TR ST e ¢ TR P iy L0 a0 e R —
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Y = P
W = PH
w = Ph'™
and
CY = I
Cw = I
¢ = (n n)? =

For the ‘general case of L we have computaticnally

M'=UML2%+%#%ML
B = M (Lt

Y = 2B

W = 2 (BH)

w = z(Bn'™)

(20.8.81)
(20.8.82)

(20.8.83)

(20.8.84)
(20.8.85)

(20.8.86)

(20.8.87)
(20.8.88)
(20.8.89)
(20.8.90)

(20.8.91)

For the general case we also have Egs. (20.8.84), (20.8.85), and (20.8.86).



